Evaluating Glycerol's Performance as a Sustainable Dehydrator in Ethanol Purification

Muhali Muhali, Hulyadi Hulyadi, Faizul Bayani

Abstract


This research aims to evaluate the effectiveness of glycerol as a dehydrator in the process of purifying ethanol solutions. This study is a quantitative descriptive research aimed at analyzing the effectiveness of glycerol, derived from used cooking oil, as a water dehydrating agent in the ethanol purification process. Data obtained will be quantitative and statistically analyzed to evaluate glycerol's performance as a dehydrator. The research was conducted at the Chemistry Laboratory of Mandalika Education University (UNDIKMA) over a specific period according to the research schedule.Independent Variable is glycerol from used cooking oil as a dehydrating agent. The concentration of glycerol used is determined based on the percentage of glycerol in the ethanol solution. Dependent variable the effectiveness of ethanol purification, measured through the comparison of density and percentage of standard bioethanol and Controlled variables is Temperature and pressure during the dehydration process, duration of the purification process, and the initial ethanol concentration before purification. Data analysis uses a simple regression curve that follows Lambert Beer's law. In conclusion, the results obtained (increasing the ethanol concentration to 90.5%) show that glycerol is a very effective dehydrator in reducing water content, especially for solutions with high water content such as ethanol at an initial concentration of 23.3%.


Keywords


Glyserol;Dehydrator in Ethanol Purification

Full Text:

PDF

References


Ab Rasid, N. S., Shamjuddin, A., Abdul Rahman, A. Z., & Amin, N. A. S. (2021). Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. Journal of Cleaner Production, 321, 129038. https://doi.org/10.1016/j.jclepro.2021.129038

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6

Arabadzhyan, A., Figini, P., García, C., González, M. M., Lam-González, Y. E., & León, C. J. (2021). Climate change, coastal tourism, and impact chains – a literature review. Current Issues in Tourism, 24(16), 2233–2268. https://doi.org/10.1080/13683500.2020.1825351

Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M., Parmentier, F.-J. W., Brown, R., Bhatt, U. S., Euskirchen, E. S., Romanovsky, V. E., Walsh, J. E., Overland, J. E., Wang, M., Corell, R. W., Meier, W. N., Wouters, B., Mernild, S., Mård, J., Pawlak, J., & Olsen, M. S. (2019). Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters, 14(4), 045010. https://doi.org/10.1088/1748-9326/aafc1b

Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivančić Šantek, M., Komes, D., Novak, S., & Šantek, B. (2018). Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technology and Biotechnology, 56(3), 289–311. https://doi.org/10.17113/ftb.56.03.18.5546

Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1), 1–31. https://doi.org/10.1007/s00299-021-02759-5

Conde-Mejía, C., Jiménez-Gutiérrez, A., & Gómez-Castro, F. I. (2016). Purification of Bioethanol from a Fermentation Process: Alternatives for Dehydration. In Z. Kravanja & M. Bogataj (Eds.), Computer Aided Chemical Engineering (Vol. 38, pp. 373–378). Elsevier. https://doi.org/10.1016/B978-0-444-63428-3.50067-9

Domínguez, E., Río, P. G. del, Romaní, A., Garrote, G., & Domingues, L. (2021). Hemicellulosic Bioethanol Production from Fast-Growing Paulownia Biomass. Processes, 9(1), Article 1. https://doi.org/10.3390/pr9010173

Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797–809. https://doi.org/10.1016/j.enpol.2012.10.046

Hulyadi, H. (2017). KARAKTERISASI ZEOLIT ALAM SELONG BELANAK LOMBOK SEBAGAI ADSORBEN DALAM PEMURNIAN ALKOHOL FERMENTASI. Hydrogen: Jurnal Kependidikan Kimia, 5(1), 1–7. https://doi.org/10.33394/hjkk.v5i1.101

Janković, T., Straathof, A. J. J., McGregor, I. R., & Kiss, A. A. (2024). Bioethanol separation by a new pass-through distillation process. Separation and Purification Technology, 336, 126292. https://doi.org/10.1016/j.seppur.2024.126292

Khalid, A., Aslam, M., Qyyum, M. A., Faisal, A., Khan, A. L., Ahmed, F., Lee, M., Kim, J., Jang, N., Chang, I. S., Bazmi, A. A., & Yasin, M. (2019a). Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renewable and Sustainable Energy Reviews, 105, 427–443. https://doi.org/10.1016/j.rser.2019.02.002

Khalid, A., Aslam, M., Qyyum, M. A., Faisal, A., Khan, A. L., Ahmed, F., Lee, M., Kim, J., Jang, N., Chang, I. S., Bazmi, A. A., & Yasin, M. (2019b). Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renewable and Sustainable Energy Reviews, 105, 427–443. https://doi.org/10.1016/j.rser.2019.02.002

Kusworo, T. D., Yulfarida, M., Kumoro, A. C., & Utomo, D. P. (2023). Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane. Chinese Journal of Chemical Engineering, 55, 123–136. https://doi.org/10.1016/j.cjche.2022.04.028

Li, G.-B., Chen, J., Song, B.-Q., Zhang, X., Zhang, Z., Pan, R.-K., Pei, L.-M., Liao, L.-S., Guan, G.-W., Wang, J., Liu, S.-G., & Yang, Q.-Y. (2022). Efficient purification of bioethanol by an ethanol-trapping coordination network. Separation and Purification Technology, 293, 121097. https://doi.org/10.1016/j.seppur.2022.121097

Myers, S. S., Smith, M. R., Guth, S., Golden, C. D., Vaitla, B., Mueller, N. D., Dangour, A. D., & Huybers, P. (2017). Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annual Review of Public Health, 38(Volume 38, 2017), 259–277. https://doi.org/10.1146/annurev-publhealth-031816-044356

Oladipo, B., Taiwo, A. E., & Ojumu, T. V. (2023). Bioethanol Recovery and Dehydration Techniques. In E. Betiku & M. M. Ishola (Eds.), Bioethanol: A Green Energy Substitute for Fossil Fuels (pp. 229–254). Springer International Publishing. https://doi.org/10.1007/978-3-031-36542-3_9

Petrakopoulou, F., Robinson, A., & Olmeda-Delgado, M. (2020). Impact of climate change on fossil fuel power-plant efficiency and water use. Journal of Cleaner Production, 273, 122816. https://doi.org/10.1016/j.jclepro.2020.122816

Senatore, A., Dalena, F., & Basile, A. (2020). Chapter 19—Novel bioethanol production processes and purification technology using membranes. In A. Basile, G. Centi, M. D. Falco, & G. Iaquaniello (Eds.), Studies in Surface Science and Catalysis (Vol. 179, pp. 359–384). Elsevier. https://doi.org/10.1016/B978-0-444-64337-7.00019-7

Singh, A., & Rangaiah, G. P. (2017). Review of Technological Advances in Bioethanol Recovery and Dehydration. Industrial & Engineering Chemistry Research, 56(18), 5147–5163. https://doi.org/10.1021/acs.iecr.7b00273

Soeder, D. J. (2021). Fossil Fuels and Climate Change. In D. J. Soeder (Ed.), Fracking and the Environment: A scientific assessment of the environmental risks from hydraulic fracturing and fossil fuels (pp. 155–185). Springer International Publishing. https://doi.org/10.1007/978-3-030-59121-2_9

Zhao, Q., Yu, P., Mahendran, R., Huang, W., Gao, Y., Yang, Z., Ye, T., Wen, B., Wu, Y., Li, S., & Guo, Y. (2022). Global climate change and human health: Pathways and possible solutions. Eco-Environment & Health, 1(2), 53–62. https://doi.org/10.1016/j.eehl.2022.04.004




DOI: https://doi.org/10.33394/hjkk.v12i6.14417

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.