Revolutionizing Midwifery Education : A Scoping Review of Artificial Intelligence Methods
Abstract
This study aims to explore the application of artificial intelligence (AI) methods in midwifery education and to identify key barriers to their effective implementation. This study employed a systematic literature review method conducted using the Arksey and O'Malley framework and aligned with PRISMA-ScR guidelines. Articles were sourced from PubMed, ScienceDirect, and Google Scholar, limited to publications from 2020 to March 2025. Data were analyzed through qualitative thematic analysis, with contextual analysis applied where relevant to infer missing or ambiguous details in the source articles. Of 182 articles identified, 9 met the inclusion criteria. The review revealed four main AI applications: predictive analytics for risk identification, decision support systems (DSS) for evidence-based practice, AI-powered simulations for clinical training, and generative AI tools like ChatGPT for fostering critical thinking and digital literacy. Despite these advancements, challenges such as ethical concerns (algorithmic bias, privacy issues), poor data quality, limited AI expertise among educators, and resistance to change in traditional learning environments were noted. AI has the potential to transform midwifery education, but overcoming technical, ethical, and pedagogical barriers is essential for its successful integration. Enhancing faculty capacity, ensuring data integrity, and incorporating AI literacy into curricula are vital steps toward sustainable implementation.
Keywords
Full Text:
PDFReferences
Aabaah, I., Wiredu, J. K., Batowise, B. E., & Seidu, N. A. (2025). Revolutionizing Nursing and Midwifery Informatics Curriculum Evaluation in Ghana: A Data-Driven Machine Learning Approach. Journal of Information Systems and Informatics, 7(1), 442–460.
Akinyemi, O. O., Ogbeye, G. B., Adegbilero-Iwari, O. E., & Afolalu, A. S. (2025). AI-Driven Assessment of Educational Interventions: Enhancing Midwives’ Competence in using condom-catheter intrauterine balloon tamponade-Review. ABUAD Journal of Engineering Research and Development (AJERD), 8(1), 151–160.
Ali, M. O. A. M., Elhabeeb, S. M. A., Elsheikh, N. E. A., Mohammed, F. S. A., Ali, S. H. M., Abdelhalim, A. A. I., Altom, D. S., Omar, M., Elhabeeb, S. M. A., Elsheikh, N. E. A., Sr., F. S. A. M., Ali, S., Abdelhalim, A. A. I., & Altom, D. S. (2025). Advancing Obstetric Care Through Artificial Intelligence-Enhanced Clinical Decision Support Systems: A Systematic Review. Cureus, 17(3). https://doi.org/10.7759/CUREUS.80514
Ali, N. S., Ali, A. A., Khan, J., Mehmood, R., & Shahid, N. (2025). The Role Of Artificial Intelligence In Maternal Healthcare: Enhancing Midwifery Practices To Reduce Health Disparities, A Systematic Review. Insights-Journal of Life and Social Sciences, 3(1), 197–203.
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., & Badreldin, H. A. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1), 689.
Arksey, H., & O’malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32.
Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983.
Chan, K. S., & Zary, N. (2019). Applications and challenges of implementing artificial intelligence in medical education: integrative review. JMIR Medical Education, 5(1), e13930.
Edward, K., Kruger, G., Irvine, S., Philip, S., & Tyler, D. (2024). Block learning: Evaluation of a new teaching approach for nursing and midwifery education. Nurse Education in Practice, 75, 103905. https://doi.org/https://doi.org/10.1016/j.nepr.2024.103905
Elyakim, N. (2025). Bridging expectations and reality: Addressing the price-value paradox in teachers’ AI integration. Education and Information Technologies, 1–40.
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29.
Gabriel, D. L., Carter, A., Carter, J., Denham, R., & Campagnolo, J. (2024). P17 - Moving Midwifery Education Forward: Using generative AI to facilitate critical analysis. Women and Birth, 37, 101772. https://doi.org/https://doi.org/10.1016/j.wombi.2024.101772
Georgieva-Tsaneva, G., Serbezova, I., & Beloeva, S. (2024). Application of Virtual Reality, Artificial Intelligence, and Other Innovative Technologies in Healthcare Education (Nursing and Midwifery Specialties): Challenges and Strategies. Education Sciences, 15(1), 11.
Giordano, C., Brennan, M., Mohamed, B., Rashidi, P., Modave, F., & Tighe, P. (2021). Accessing artificial intelligence for clinical decision-making. Frontiers in Digital Health, 3, 645232.
Hah, H., & Goldin, D. S. (2021). How clinicians perceive artificial intelligence–assisted technologies in diagnostic decision making: Mixed methods approach. Journal of Medical Internet Research, 23(12), e33540.
Kovalainen, T., Pramila-Savukoski, S., Kuivila, H.-M., Juntunen, J., Jarva, E., Rasi, M., & Mikkonen, K. (2025). Utilising artificial intelligence in developing education of health sciences higher education: An umbrella review of reviews. Nurse Education Today, 106600.
Kranz, A., & Abele, H. (2024). The impact of artificial intelligence (AI) on midwifery education: A scoping review. Healthcare, 12(11), 1082.
Lestariningrum, A., Ausat, A. M. A., Wanof, M. I., Pramono, S. A., & Syamsuri, S. (2024). The Impact of AI Use in Learning and Digital Material Accessibility on Students’ Academic Achievement through Technology Engagement as A Mediating Variable: The Perspective of Theory of Planned Behaviour and UTAUT Theory. Jurnal Kependidikan: Jurnal Hasil Penelitian Dan Kajian Kepustakaan Di Bidang Pendidikan, Pengajaran Dan Pembelajaran, 10(4), 1317–1328.
Levac, D., Colquhoun, H., & O’brien, K. K. (2010). Scoping studies: advancing the methodology. Implementation Science, 5, 1–9.
Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., & Zou, J. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4(8), 669–677.
Magrabi, F., Ammenwerth, E., McNair, J. B., De Keizer, N. F., Hyppönen, H., Nykänen, P., Rigby, M., Scott, P. J., Vehko, T., & Wong, Z. S.-Y. (2019). Artificial intelligence in clinical decision support: challenges for evaluating AI and practical implications. Yearbook of Medical Informatics, 28(01), 128–134.
Maulana, S., Iqhrammullah, M., Pratama, R., Tjandra, S., Mulya, I. C., & Haroen, H. (2025). Bibliometric Analysis and ChatGPT-Assisted Identification of Key Strategies for Improving Primary Maternity Care Based on a Decade of Collective Research. International Journal of Women’s Health, 53–66.
O’Connor, S. (2022). Teaching artificial intelligence to nursing and midwifery students. Nurse Education in Practice, 64, 103451. https://doi.org/https://doi.org/10.1016/j.nepr.2022.103451
O’Connor, S., Yan, Y., Thilo, F. J. S., Felzmann, H., Dowding, D., & Lee, J. J. (2023). Artificial intelligence in nursing and midwifery: A systematic review. Journal of Clinical Nursing, 32(13–14), 2951–2968.
Patel, V. L., Kaufman, D. R., & Kannampallil, T. G. (2013). Diagnostic reasoning and decision making in the context of health information technology. Reviews of Human Factors and Ergonomics, 8(1), 149–190.
Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development.
Saragih, L. S., Darma, J., & Siahaan, S. D. N. (2025). Effectiveness Analysis of Digital Teaching Materials and Assessment for Gadget Based Application by Using Artificial Intelligence. Jurnal Kependidikan: Jurnal Hasil Penelitian Dan Kajian Kepustakaan Di Bidang Pendidikan, Pengajaran Dan Pembelajaran, 11(1).
Shoghli, A., Darvish, M., & Sadeghian, Y. (2024). Balancing Innovation and Privacy: Ethical Challenges in AI-Driven Healthcare. Journal of Reviews in Medical Sciences, 4(1), 1–11.
Sriram, A., Ramachandran, K., & Krishnamoorthy, S. (2025). Artificial Intelligence in Medical Education: Transforming Learning and Practice. Cureus, 17(3).
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., & Weeks, L. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine, 169(7), 467–473.
Unlu Bidik, N. (2025). Theoretical and Clinical Learning Experiences and Expectations of Midwifery Students Using the Artificial Intelligence Tool ChatGPT: A Qualitative Study. European Journal of Education, 60(1), e12848.
Yu, K.-H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731.
DOI: https://doi.org/10.33394/jp.v12i2.15175
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Paedagogy
ISSN: 2722-4627 (Online)
Published by Fakultas Ilmu Pendidikan dan Psikologi (FIPP)
Universitas Pendidikan Mandalika (UNDIKMA)
Email: [email protected]
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.