Formulation and Evaluation of Dishwashing Soap Based on Eichhornia crassipes Activated Carbon as an Environmentally Friendly Cleanser

Erlin Dwi Nurrohimi, Arjuna Pramana, Rina Idayanti, Marsha Azharia Husna, Lisa Amelia, Wirhanuddin Wirhanuddin

Abstract


Eichhornia crassipes is an invasive aquatic plant found in tropical and subtropical waters that has high cellulose, lignin, and hemicellulose content, making it a potential raw material for activated carbon. The use of activated carbon in dishwashing soap can enhance cleaning power by absorbing oil, odors, and microscopic dirt. This study aims to formulate and evaluate a liquid dishwashing soap product containing carbon from water hyacinth as a natural cleaning agent. The water hyacinth samples used were dried stems, collected from local water bodies, and prepared by drying under sunlight to reduce moisture content. The stems were then subjected to carbonation at 600 °C for 60 minutes to produce biochar, followed by a comminution process using ball milling to produce fine activated carbon powder. The resulting carbon was formulated into a dishwashing soap base at a ratio of 1 mg per 100 mL of product. Product evaluations were conducted based on Indonesian National Standards (SNI) and yielded the following results: a pH value of 9.78 (SNI 8–10.8), foam stability of 90% (SNI 60–100%), viscosity of 206.11 cP (SNI 400–4000 cP), free alkali content of 0.104% (SNI <0.14%), and specific gravity of 1.045 g/mL (SNI 1.01–1.1 g/mL). The novelty of this study lies in the utilization of activated carbon derived from Eichhornia crassipes, which is formulated into liquid dishwashing soap and comprehensively evaluated based on national quality standards (SNI). This approach has rarely been reported in similar studies. The results demonstrate the potential of water hyacinth as an alternative active ingredient in the development of sustainable household cleaning products.

Keywords


water hyacinth; dishwashing sap; activated carbon; natural cleaner; SNI

Full Text:

PDF

References


Ananpreechakorn, W., & Seetawan, T. (2021). Synthesis and characterization of activated carbon from water hyacinth. Journal of Physics: Conference Series, 2013(1). https://doi.org/10.1088/1742-6596/2013/1/012025

Arrazi, M. M., Nisah, K., & Arfi, F. (2021). Karakterisasi Sabun Cair Cuci Piring dengan Variasi Konsentrasi NaCl. Amina, 3(3), 136–140.

Atesci, Z. C., & Inan, H. (2023). Removal of microfiber and surfactants from household laundry washing effluents by powdered activated carbon: kinetics and isotherm studies. Water Science and Technology, 88(6), 1578–1593. https://doi.org/10.2166/WST.2023.281/1287028/WST2023281.PDF

Diana, V. E., Abadi, H., & Andry, M. (2024). Formulation and Effectiveness Test of Liquid Soap from Siam Weed (Chromolaena odorata (L.) Leaves Ethanol Extract Against Staphylococcus aureus. Jurnal Biologi Tropis, 24(4), 835–847. https://doi.org/10.29303/JBT.V24I4.7981

Dipaningrum, P. K., Ulfa, A. M., & Khoirunnisa, S. M. (2021). Penetapan Kadar Alkali Bebas Pada Sabun Cuci Krim Yang Dijual Di Mini Market Secara Asidimetri. Jurnal Analis Farmasi, 6(2), 130–135. https://doi.org/10.33024/jaf.v6i2.5956

Do, D. N., Dang, T. T., Le, Q. T., Lam, T. D., Bach, L. G., Nguyen, D. C., & Toan, T. Q. (2019). Extraction of saponin from gleditsia peel and applications on natural dishwashing liquid detergent. Materials Today: Proceedings, 18, 5219–5230. https://doi.org/10.1016/j.matpr.2019.07.522

Fatkhurrachman, F., Avidlyandi, A., Nurhasana, D., Erliana, D., Sari, M. E., Banon, C., Wibowo, R. H., & Adfa, M. (2023). Liquid Soap with Active Ingredients of Methanol Extract of Sambang Darah Leaves (Excoecaria cochinchinensis L.): Formulation, Characterization, and Antibacterial Activity. Stannum : Jurnal Sains Dan Terapan Kimia, 5(1), 15–23. https://doi.org/10.33019/JSTK.V5I1.3845

Fernandes, A. P. M., Ferreira, A. M., Sebastião, M., Santos, R., Neves, C. M. S. S., & Coutinho, J. A. P. (2022). First Stage of the Development of an Eco-Friendly Detergent Formulation for Efficient Removal of Carbonized Soil. Molecules, 27(21). https://doi.org/10.3390/MOLECULES27217460

Galgali, P., Palimkar, S., Adhikari, A., Patel, R., & Routh, J. (2023). Remediation of potentially toxic elements -containing wastewaters using water hyacinth – a review. International Journal of Phytoremediation, 25(2), 172–186. https://doi.org/10.1080/15226514.2022.2068501

González-García, P., Gamboa-González, S., Andrade Martínez, I., & Hernández-Quiroz, T. (2020). Preparation of activated carbon from water hyacinth stems by chemical activation with K2CO3 and its performance as adsorbent of sodium naproxen. Environmental Progress & Sustainable Energy, 39(3). https://doi.org/10.1002/EP.13366

Hendrasarie, N., & Redina, C. (2023). Ability of Water Lettuce (Pistia stratiotes) And Water Hyacinth (Eichhornia crassipes) To Remove Methylene Blue Anionic Surfactant (MBAS) From Detergent Wastewater. Nature Environment and Pollution Technology, 22(4), 1961–1970. https://doi.org/10.46488/NEPT.2023.v22i04.022

Isnawati, N. (2020). Formulation and Effectiveness Test of Eschericia coli Bacteria Organic Liquid Soap Preparations Aloe Vera Leaf (Aloe Vera Linn). Health Media, 1(2), 45–49. https://doi.org/10.55756/HM.V1I2.39

Laksana, Oktavillariantika, Pratiwi, Wijayanti, & Yustiantara. (2017). Optimasi Konsentrasi Hpmc Terhadap Mutu Fisika Sediaan Sabun Cair Menthol. Jurnal Farmasi Udayana, 6, 1–22.

Lakshmipurada, S., REDDY, K. R., & Sundaravel, S. (2021). Synthesis and Characterization of Activated Carbon/ZnO Nanocomposite from Water Hyacinth for Heavy Metals Adsorption and its Antimicrobial Activity. Asian Journal of Chemistry, 26(12), 70–73.

Masakul, P., Nilmoung, S., Sonsupap, S., & Laorach, L. (2023). The electrochemical properties of water hyacinth-derived activated carbon. Journal of Metals, Materials and Minerals, 33(3), 2–7. https://doi.org/10.55713/jmmm.v33i3.1618

Maulina, W., Kusumaningtyas, R., Rachmawati, Z., Supriyadi, Arkundato, A., Rohman, L., & Purwandari, E. (2019). Carbonization Process of Water Hyacinth as an Alternative Renewable Energy Material for Biomass Cook Stoves Applications. IOP Conference Series: Earth and Environmental Science, 239(1). https://doi.org/10.1088/1755-1315/239/1/012035

Maysarah, H., Desiyana, L. S., Nurzuhra, S., & Illian, D. N. (2023). Utilization of Spent Arabica Coffee Grounds as Raw Material for Activated Charcoal in Liquid Bath Soap Formulation. Pharmaceutical Sciences and Research, 10(1). https://doi.org/10.7454/PSR.V10I1.1282

Morales S, L., Baas-López, J. M., Barbosa, R., Pacheco, D., & Escobar, B. (2021). Activated carbon from Water Hyacinth as electrocatalyst for oxygen reduction reaction in an alkaline fuel cell. International Journal of Hydrogen Energy, 46(51), 25995–26004. https://doi.org/10.1016/j.ijhydene.2021.04.094

Nababan, B. P., Mulmeyda, R., & Insyani, N. P. (2024). Utilization of Used Cooking Oil in Making Liquid Soap with the Addition of Water Hyacinth ( Eichhornia crassipes ) Leaf Extract as an Antibacterial. Chemistry and Materials, 3(2), 64–70.

Nafisyah, E., Arrisujaya, D., & Susanti, E. (2022). The utilization of water hyacinth (Eichhornia crassipes) harvested from the phytoremediation process as activated carbon in Cr(VI) adsorption. IOP Conference Series: Earth and Environmental Science, 1211(1). https://doi.org/10.1088/1755-1315/1211/1/012019

Nisa, K., Ringo, L. S., Aulia, M. R., Alfizar, Inayatillah, & Kurniasih, E. (2025). Peningkatan Pengetahuan Kewirausahaan Siswa Di Dengan Pelatihan Pembuatan Sabun Cuci Piring Cair Improving Entrepreneurship Knowledge Of Students In Meulaboh State Vocational High School 3 With Liquid Dishwasher Soap-Making Training. Jurnal Pengabdian Kepada Masyarakat Wisdom, 2(1), 190–197.

Nurhadi, M., Widiyowati, I. I., Wirhanuddin, W., & Chandren, S. (2019). Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 14(1), 17–27. https://doi.org/10.9767/BCREC.14.1.2548.17-27

Nurhayati, O. D., Situmorang, I. M. B., & Rahayu, F. E. (2023). Formulation and evaluation of liquid soap preparation of robusta green coffee extract (Coffea canephora) with virgin coconut oil (VCO) base as an antibacterial Staphylococcus aureus. Jurnal Pendidikan Kimia, 15(3), 214–220. https://doi.org/10.24114/JPKIM.V15I3.50078

Okkyana, K. P., Chusun, C., & Lisawati, T. (2023). Edukasi Pembuatan Sabun Cuci Piring Cair sebagai Peluang Wirausaha bagi Ibu-Ibu disekitar Kampus. Jurnal Abdi Masyarakat Kita, 3(2), 164–177. https://doi.org/10.33759/ASTA.V3I2.428

Ratnani, R. D., Ariyaningrum, A. Y., & Maharani, F. (2022). Wastewater Treatment Bakery Using Active Carbon Of Water Hyacint And Boiler Waste. Journal of Chemical Process and Material Technology, 1(2), 27. https://doi.org/10.36499/JCPMT.V1I2.7117

Rofikoh, V., Zaman, B., & Samadikun, B. P. (2023). The Potential of Commercial Biomass-Based Activated Carbon to Remove Heavy Metals in Wastewater – A Review. Jurnal Ilmu Lingkungan, 22(1), 132–141. https://doi.org/10.14710/JIL.22.1.132-141

Silvia Sianiar, D., Gede Ratna juliasih, N. L., & Abadi Kiswandono, A. (2021). Pembuatan Sabun Cair Cuci Piring Berbasis Surfaktan Sodium Louryl Sulfate. Analit:Analytical and Environmental Chemistry, 6(02), 188–196. https://doi.org/10.23960/aec.v6.i2.2021.p188-196

Sriwening, P. I., & Susanti, M. M. (2022). Kualitas Mutu Sabun Cair Organik Berbahan Dasar Minyak Jarak Dan Soda Qie. Indonesian Journal on Medical Science, 9(2), 155–160. https://doi.org/10.55181/ijms.v9i2.370

Weerasuk, B., Chutimasakul, T., Prigyai, N., Nilgumhang, K., Kaeopookum, P., & Sangtawesin, T. (2024). Structural and Electrochemical Evolution of Water Hyacinth-Derived Activated Carbon with Gamma Pretreatment for Supercapacitor Applications. Materials, 17(13). https://doi.org/10.3390/MA17133233

Wu, H. Y., Shih, C. L., Lee, T., Chen, T. Y., Lin, L. C., Lin, K. Y., Chang, H. C., Chuang, I. C., Liou, S. Y., & Liao, P. C. (2019). Development and validation of an analytical procedure for quantitation of surfactants in dishwashing detergents using ultra-performance liquid chromatography-mass spectrometry. Talanta, 194, 778–785. https://doi.org/10.1016/J.TALANTA.2018.10.084




DOI: https://doi.org/10.33394/hjkk.v13i3.16034

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.