Development of Assessment Tools for Understanding Submicroscopic Representations in Acid-Base Material

Ivan Ashif Ardhana, Rahayu Nur Hidayah, Syandifa Rohadlotul ‘Aisy, Mustabsyirotul Ijtihadah

Abstract


Acid-base material should ideally be evaluated holistically through the triplet of macroscopic, submicroscopic, and symbolic representations. However, the assessments conducted so far have primarily not evaluated the ability to understand submicroscopic representations and still focus on macroscopic and symbolic representations. Therefore, this research aims to develop an instrument for assessing submicroscopic understanding of acid-base material and analyze its feasibility. The research method used is the 4D model development, carried out up to the develop stage. The results of the content validation by expert validators yielded an average score of 91.2%, which falls into the very valid category. The empirical test results on 116 chemistry teachers and prospective chemistry teachers showed that all items on the instrument were valid with a reliability of 0.60, which falls into the reliable category. Moreover, the instrument has varying levels of difficulty index and discrimination power. The test items' character in the instrument assesses understanding of submicroscopic representations of acid-base concepts such as solution properties, acid strength, acid constant, pH, and degree of dissociation. The recommendation for further research is the need to develop and apply submicroscopic understanding questions in other chemistry topics as a reinforcement in the assessment and evaluation process of chemistry learning.

Keywords


submicroscopic representation; acid-base; instrument; development research; chemistry

Full Text:

PDF

References


Ahmar, D. S., Azzajjad, M. F., & Syahrir, Muh. (2020). Students’ Representation Ability in Chemistry. Journal of Applied Science, Engineering, Technology, and Education, 2(2), 181–187. https://doi.org/10.35877/454ri.asci22124

Aisy, S. R., & Ardhana, I. A. (2023). Analisis Tingkat Keterampilan Berpikir Kritis Siswa Kelas XI IPA SMA PGRI 1 Jombang pada Materi Asam Basa Ditinjau dari Perbedaan Gender. 7(2), 17–26.

Al-Balushi, S. M. (2013). The effect of different textual narrations on students’ explanations at the submicroscopic level in chemistry. Eurasia Journal of Mathematics, Science and Technology Education, 9(1), 3–10. https://doi.org/10.12973/eurasia.2013.911a

Ariani, S., Effendy, E., & Suharti, S. (2020). Model Mental Mahasiswa Pada Fenomena Penghilangan Karat Melalui Elektrolisis. Chemistry Education Practice, 3(2), 55. https://doi.org/10.29303/cep.v3i2.2104

Arikunto, Suharsimi. (2021). Dasar-Dasar Evaluasi Pendidikan Edisi 3—Google Books. In Bumi Aksara.

Devetak, I., Vogrinc, J., & Glažar, S. A. (2009). Assessing 16-year-old students’ understanding of Aqueous solution at submicroscopic level. Research in Science Education, 39(2), 157–179. https://doi.org/10.1007/s11165-007-9077-2

Devi, N. A., & Azra, F. (2023). Pengembangan Instrumen Tes Diagnostik Untuk Melihat Gambaran Model Mental Peserta Didik Pada Materi Asam Basa. Entalpi Pendidikan Kimia, 16–26. https://doi.org/10.24036/epk.v4i3.345

Eliyawati, Rohman, I., & Kadarohman, A. (2018). The effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte. Journal of Physics: Conference Series, 1013(1). https://doi.org/10.1088/1742-6596/1013/1/012002

Fadhilah, S. N., Widarti, H. R., & Su’aidy, M. (2018). Pengembangan Instrumen Asesmen Berbasis Interkoneksi Multipel Representasi pada Materi Larutan Penyangga. Prosiding Seminar Nasional Kimia Dan Pembelajarannya (SNKP), November, 110–119.

Farida, I. (2009). The Importance of Development of Representational Competence in Chemical Problem Solving Using Interactive Multimedia Ida Farida , Dra. M. Pd. Study Program of Chemistry Education UIN Sunan Gunung Djati Bandung Email: [email protected]. Proceeding of The Third International Seminar on Science Education, October, 259–277.

Farida, I., Liliasari, L., Widyantoro, D. H., & Sopandi, W. (2010). Representational Competence’s Profile of Pre-Service Chemistry Teachers in Chemical Problem Solving. 4th International Seminar of Science Education, Bandung, 30.

Gilbert, J. K., & Treagust, D. F. (2009). Multiple representation in chemicals education. In Journal of Chemical Information and Modeling (Vol. 4).

Harrison, A. G., & Treagusf, D. F. (2002). Chapter 9 The Particulate Nature of Matter : Challenges In Understanding The Submicroscopic World. 189–212.

Hidayah, R. N., & Ardhana, I. A. (2024). Analysis of Multiple Representation Abilities of Male and Female Grade. UNESA Journal of Chemical Education, 13(1), 52–59.

Hrast, Š., & Savec, V. F. (2017). The integration of submicroscopic representations used in chemistry textbook sets into curriculum topics. Acta Chimica Slovenica, 64(4), 959–967. https://doi.org/10.17344/acsi.2017.3657

Hulyadi, H., Bayani, F., Ferniawan, Rahmawati, S., Liswijaya, Wardani, I. K., & Swati, N. N. S. (2024). Meeting 21st-Century Challenges: Cultivating Critical Thinking Skills through a Computational Chemistry-Aided STEM Project-Based Learning Approach. International Journal of Contextual Science Education, 1(2), 57–64. https://doi.org/10.29303/ijcse.v1i2.609

Indrayani, P. (2013). Analisis Pemahaman Makroskopik, Mikroskopik, dan Simbolik Titrasi Asam-Basa Siswa Kelas XI IPA SMA serta Upaya Perbaikannya dengan Pendekatan Mikroskopik. Jurnal Pendidikan Sains, 1(2), 109–120.

Kasanah, I. D., & Ardhana, I. A. (2024). Effect the Problem-Based Learning Model on Ability Multiple Representations of Xi-Grade Students on Acid-Based Topic. UNESA Journal of Chemical Education, 13(1), 25–29. https://doi.org/10.26740/ujced.v13n1.p25-29

Khaeruman, K., Darmatasyah, D., & Hulyadi, H. (2017). The Development Of Chemistry Virtual Laboratory On Colloidal System To Improve Generic Science Skills. Hydrogen: Jurnal Kependidikan Kimia, 5(2), 84–93. https://doi.org/10.33394/hjkk.v5i2.1593

Mashami, R. A., Khaeruman, K., & Ahmadi, A. (2021). Pengembangan Modul Pembelajaran Kontekstual Terintegrasi Augmented Reality untuk Meningkatkan Keterampilan Berpikir Kritis Siswa. Hydrogen: Jurnal Kependidikan Kimia, 9(2), 67. https://doi.org/10.33394/hjkk.v9i2.4500

Miterianifa, & Zein, M. (2016). Evaluasi Pembelajaran Kimia (Model Integrasi Sains Dengan Islam) (Vol. 1).

Muslim, F. E., & Ardhana, I. A. (2023). Development of Android-Based Chemistry Virtual Laboratory Media on Acid-Base Materials for 11th Grade High School Students. Hydrogen: Jurnal Kependidikan Kimia, 11(2), 166–177.

Nakiboǧlu, C., & Nakiboǧlu, N. (2019). Exploring prospective chemistry teachers’ perceptions of precipitation, conception of precipitation reactions and visualization of the sub-microscopic level of precipitation reactions. Chemistry Education Research and Practice, 20(4), 873–889. https://doi.org/10.1039/c9rp00109c

Sagita, R., Azra, F., & Azhar, M. (2017). Pengembangan Modul Konsep Mol Berbasis Inkuiri Terstruktur Dengan Penekanan Pada Interkoneksi Tiga Level Representasi Kimia Untuk Kelas X Sma. Jurnal Eksakta Pendidikan (Jep), 1(2), 25. https://doi.org/10.24036/jep.v1i2.48

Sarah, F., Khaldun, I., & Gani, A. (2021). The Development Higher Order Thinking Skill (Hots) As Questions In Chemistry Study (Solubility And Solubility Product Constant). Jurnal Pendidikan Sains (Jps), 9(1), 51. https://doi.org/10.26714/jps.9.1.2021.51-60

Sari, C. W., & Helsy, I. (2018). Analisis Kemampuan Tiga Level Representasi Siswa Pada Konsep Asam-Basa Menggunakan Kerangka Dac (Definition, Algorithmic, Conceptual). JTK (Jurnal Tadris Kimiya), 3(2), 158–170. https://doi.org/10.15575/jtk.v3i2.3660

Siregar, N. A. M., Muchtar, Z., Sutiani, A., Dibyantini, R. E., & Sinaga, M. (2023). Pengembangan Instrumen Evaluasi untuk Mengukur Keterampilan Berpikir Tingkat Tinggi pada Materi Kesetimbangan Kimia. JIIP - Jurnal Ilmiah Ilmu Pendidikan, 6(7), 4834–4842. https://doi.org/10.54371/jiip.v6i7.1916

Sukarma, I. K., Hulyadi, H., Muhali, M., & Azmi, I. (2024). Exploration of Student Thinking Systems Through STEM-PjBL Project Based Learning in the Science Field. Hydrogen: Jurnal Kependidikan Kimia, 12(3), 526–543. https://doi.org/10.33394/hjkk.v12i3.12273

Treagust, D. F., & Chittleborough, G. (2007). The Modelling Ability of Non-major Chemistry Students and Their Understanding of the Sub-microscopic Level. Chemistry Education Research and Practice, 8(3), 274–361.

Winarti, A., Almubarak, & Annurc, S. (2019). How does the rasch model justify multiple choice question items as a measure of student understanding of acid-base material at the sub-microscopic level? International Journal of Innovation, Creativity and Change, 7(11), 344–360.




DOI: https://doi.org/10.33394/hjkk.v13i1.14328

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.