Preliminary Study on the Potential of Red Fruit Pigment (Pandanus conoideus) from West Papua as Dye-Sensitized Solar Cell (DSSC)

Jamius Bin Stepanus, Abdul Zaid Patiran, Sabir Sumarna, Muh. Fajar Islam

Abstract


The red fruit (Pandanus conoideus) is an endemic plant from Papua, known for its distinctive color and shape. This fruit is recognized for its bioactive properties, such as antioxidant, anti-inflammatory, and antihyperglycemic effects. Its high pigment content is believed to have potential as a sensitizer in DSSC applications. However, research on this topic remains underexplored. Therefore, the aim of this preliminary study is to investigate the potential of red fruit pigments for DSSC. The characterization of red fruit pigments was conducted through phytochemical screening, FTIR and UV-Vis spectral analysis, as well as literature reviews. Pigment extraction was carried out using maceration without involving drying or grinding processes. Phytochemical screening results revealed that the macerate contains flavonoids, alkaloids, phenolics and terpenoids, compounds commonly used as natural pigments in DSSCs. FTIR analysis showed the presence of functional groups such as carboxyl (-COOH), carbonyl (C=O), and hydroxyl (-OH), which can act as effective anchoring groups when interacting with nanosemiconductor surfaces. Meanwhile, UV-Vis analysis showed absorption peaks in the UV region (wavelength 204–399 nm) and the visible region (wavelength 400–550 nm). Based on literature studies and research findings, it can be concluded that the pigments in red fruit have potential applications as DSSC sensitizers.


Keywords


dye sensitized solar cell; FTIR; Pandanus conoideus; phytochemicals; UV-Vis

Full Text:

PDF

References


Abdollahi, F., Jahadi, M., & Ghavami, M. (2021). Thermal stability of natural pigments produced by Monascus purpureus in submerged fermentation. Food Science and Nutrition, 9(9), 4855–4862. https://doi.org/10.1002/fsn3.2425

Banu, K. S., & Cathrine, L. (2015). General Techniques Involved in Phytochemical Analysis. International Journal of Advanced Research in Chemical Science, 2(4), 25–32. www.arcjournals.org

BPS-Indonesia. (2024). Listrik yang Didistribusikan Menurut Provinsi (GWh). https://www.bps.go.id/id/statistics-table/2/ODU5IzI=/listrik-yang-didistribusikan-menurut-provinsi--gwh-.html

BSN. (2015). Cara uji kimia – Bagian 2: Pengujian kadar air pada produk perikanan. Jakarta: Badan Standarisasi Nasional., 1–8.

Cámara-Leret, R., Frodin, D. G., Adema, F., Anderson, C., Appelhans, M. S., Argent, G., Arias Guerrero, S., Ashton, P., Baker, W. J., Barfod, A. S., Barrington, D., Borosova, R., Bramley, G. L. C., Briggs, M., Buerki, S., Cahen, D., Callmander, M. W., Cheek, M., Chen, C. W., … van Welzen, P. C. (2020). New Guinea has the world’s richest island flora. Nature, 584(7822), 579–583. https://doi.org/10.1038/s41586-020-2549-5

Carella, A., Borbone, F., & Centore, R. (2018). Research progress on photosensitizers for DSSC. Frontiers in Chemistry, 6(SEP), 1–24. https://doi.org/10.3389/fchem.2018.00481

Chang, H., Wu, H. M., Chen, T. L., Huang, K. D., Jwo, C. S., & Lo, Y. J. (2010). Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. Journal of Alloys and Compounds, 495(2), 606–610. https://doi.org/10.1016/j.jallcom.2009.10.057

ESDM. (2023). Statistik Ketenagalistrikan Tahun 2022 (Ed No.36).

Galoppini, E. (2004). Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 248(13–14), 1283–1297. https://doi.org/10.1016/ j.ccr.2004.03.016

Gong, J., Sumathy, K., Qiao, Q., & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68(July 2016), 234–246. https://doi.org/10.1016/j.rser.2016.09.097

Groeneveld, I., Kanelli, M., Ariese, F., & Bommel, M. R. van. (2022). Parameters that affect the photodegradation of dyes and pigments in solution and on substrate – An overview. Dyes and Pigments, 210. https://doi.org/https://doi.org/10.1016/j.dyepig.2022.110999

Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-Sensitized Solar Cells. Chemical Reviews, 110(11), 6595–6663. https://doi.org/https://doi.org/ 10.1021/cr900356p

Hao, S., Wu, J., Huang, Y., & Lin, J. (2006). Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy, 80(2), 209–214. https://doi.org/10.1016/j.solener.2005.05.009

Harborne, J. B. (1998). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis (3rd Ed.). Chapman and Hall.

Hashimoto, Y., Suzuki, H., Kondo, T., Abe, R., & Tamiaki, H. (2022). Visible-light-induced hydrogen evolution from water on hybrid photocatalysts consisting of synthetic chlorophyll-a derivatives with a carboxy group in the 20-substituent adsorbed on semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 426. https://doi.org/10.1016/j.jphotochem.2021.113750

Hernandez-Martinez, A. R., Estevez, M., Vargas, S., Quintanilla, F., & Rodríguez, R. (2012). Natural Pigment-Based Dye-Sensitized Solar Cells. Journal of Research and Technology, 10(1), 38–47.

Hollas, J. M. (2004). Modern Spectroscopy (4th Ed.). John Wiley & Son Ltd.

Hosseinnezhad, M., Gharanjig, K., Yazdi, M. K., Zarrintaj, P., Moradian, S., Saeb, M. R., & Stadler, F. J. (2020). Dye-sensitized solar cells based on natural photosensitizers: A green view from Iran. Journal of Alloys and Compounds, 828, 154329. https://doi.org/10.1016/j.jallcom.2020.154329

Hug, H., Bader, M., Mair, P., & Glatzel, T. (2014). Biophotovoltaics: Natural pigments in dye-sensitized solar cells. Applied Energy, 115, 216–225. https://doi.org/10.1016/ j.apenergy.2013.10.055

Jena, A., Mohanty, S. P., Kumar, P., Naduvath, J., Lekha, P., Das, J., Narula, H. K., Mallick, S., Bhargava, P., & Gondane, V. (2012). Dye Sensitized Solar Cells: A Review. Transactions of the Indian Ceramic Society, 71(1), 1–16. https://doi.org/http://dx.doi.org/ 10.1080/0371750X.2012.689503

Khairani, A. C., Tri Wijayanti, & Gunawan Pamudji Widodo. (2023). Antihyperglycemic Activity of Red Fruit Oil (Pandanus conoideus Lam) on Improving Kidney Function in STZ- NA-Induced Nephropathy Rats. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia, 10(2), 173–183. https://doi.org/10.20473/jfiki.v10i22023.173-183

Khiong, K., Adhika, O. A., & Chakravitha, M. (2009). Inhibition of NF-κB Pathway as the Therapeutic Potential of Red Fruit (Pandanus Conoideus Lam.) in the Treatment of Inflammatory Bowel Disease. Jurnal Kedokteran Maranatha, 9(1), 69–75.

Kumar, D., & Wong, K. T. (2017). Organic dianchor dyes for dye-sensitized solar cells. Materials Today Energy, 5, 243–279. https://doi.org/10.1016/j.mtener.2017.05.007

Kumara, N. T. R. N., Lim, A., Lim, C. M., Petra, M. I., & Ekanayake, P. (2017). Recent progress and utilization of natural pigments in dye sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 78(February), 301–317. https://doi.org/10.1016/j.rser.2017.04.075

Lee, C. P., Lin, C. A., Wei, T. C., Tsai, M. L., Meng, Y., Li, C. T., Ho, K. C., Wu, C. I., Lau, S. P., & He, J. H. (2015). Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT: PSS counter electrodes. Nano Energy, 18, 109–117. https://doi.org/10.1016/j.nanoen.2015.10.008

Manoharan, S., Asiri, A. M., & Anandan, S. (2016). Impact of anchoring groups for improving the binding nature of organic dyes toward high efficient dye sensitized solar cells. Solar Energy, 126, 22–31. https://doi.org/10.1016/j.solener.2015.12.047

Moustafa, K. F., Rekaby, M., Shenawy, E. T. El, & Khattab, N. M. (2012). Green Dyes as Photosensitizers for Dye-Sensitized Solar Cells. Journal of Applied Sciences Research, 8(8), 4393–4404.

O’Regan, B., & Gratzel, M. (1991). A Low Cost, High Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353.

Orona-Navar, A., Aguilar-Hernández, I., Nigam, K. D. P., Cerdán-Pasarán, A., & Ornelas-Soto, N. (2021). Alternative sources of natural pigments for dye-sensitized solar cells: Algae, cyanobacteria, bacteria, archaea and fungi. Journal of Biotechnology, 332(February), 29–53. https://doi.org/10.1016/j.jbiotec.2021.03.013

Patni, N., G. Pillai, S., & Sharma, P. (2020). Effect of using betalain, anthocyanin and chlorophyll dyes together as a sensitizer on enhancing the efficiency of dye-sensitized solar cell. International Journal of Energy Research, 44(13), 10846–10859. https://doi.org/10.1002/er.5752

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2013). Introduction to Spectroscopy (5th Ed.). Cengage Learning.

Pombeiro-Sponchiado, S. R., Sousa, G. S., Andrade, J. C. R., Lisboa, H. F., & Gonçalves, R. C. R. (2017). Production of Melanin Pigment by Fungi and Its Biotechnological Applications. Melanin. https://doi.org/10.5772/67375

Prakash, P., Janarthanan, B., Ubaidullah, M., Al-Enizi, A. M., Shaikh, S. F., Alanazi, N. B., Alkhalifah, R. ., & Ilyas, M. (2023). Optimization, fabrication, and characterization of anthocyanin and carotenoid derivatives based dye-sensitized solar cells. Journal of King Saud University - Science, 35(4). https://doi.org/https://doi.org/10.1016/j.jksus. 2023.102625

Qian, X., Yan, R., Hang, Y., Lv, Y., Zheng, L., Xu, C., & Hou, L. (2017). Indeno[1,2-b]indole-based organic dyes with different acceptor groups for dye-sensitized solar cells. Dyes and Pigments, 139, 274–282. https://doi.org/10.1016/j.dyepig.2016.12.028

Rohman, A., Riyanto, S., Yuniarti, N., Saputra, W. R., Utami, R., & Mulatsih, W. (2010). Antioxidant activity, total phenolic, and total flavaonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). International Food Research Journal, 17(1), 97–106.

Rohman, A., & Windarsih, A. (2018). Characterization, biological activities, and authentication of red fruit (Pandanus conoideus lam) oil. Food Research, 2(2), 134–138. https://doi.org/10.26656/fr.2017.2(2).152

Rouessac, F., & Rouessac, A. (2007). Chemical Analysis : Modern Instrumentation Methods & Techniques (2nd Ed.). Jphn Wiley & Son Ltd.

Sánchez-De-Armas, R., San Miguel, M. Á., Oviedo, J., & Sanz, J. F. (2012). Coumarin derivatives for dye sensitized solar cells: A TD-DFT study. Physical Chemistry Chemical Physics, 14(1), 225–233. https://doi.org/10.1039/c1cp22058f

Sarungallo, Z. L., Hariyadi, P., Andarwulan, N., & Purnomo, E. H. (2015b). Characterization of chemical properties, lipid profile, total phenol and tocopherol content of oils extracted from nine clones of red fruit (Pandanus conoideus). Kasetsart Journal - Natural Science, 49(2), 237–250.

Sarungallo, Z. L., Hariyadi, P., Andarwulan, N., Purnomo, E. H., & Wada, M. (2015a). Analysis of α-Cryptoxanthin, β-Cryptoxanthin, α -Carotene, and β-Carotene of Pandanus Conoideus Oil by High-performance Liquid Chromatography (HPLC). Procedia Food Science, 3, 231–243. https://doi.org/10.1016/j.profoo.2015.01.026

Shalini, S., Balasundara Prabhu, R., Prasanna, S., Mallick, T. K., & Senthilarasu, S. (2015). Review on natural dye sensitized solar cells: Operation, materials and methods. Renewable and Sustainable Energy Reviews, 51, 1306–1325. https://doi.org/10.1016/j.rser.2015.07.052

Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2015). Spectrometric Identification of Organic Compounds (8th Ed). John Wiley & Son, Inc.

Tennakone, K., Kumara, G. R. R. A., Kumarasinghe, A. R., Sirimanne, P. M., & Wijayantha, K. G. U. (1996). Efficient photosensitization of nanocrystalline TiO2 films by tannins and related phenolic substances. Journal of Photochemistry and Photobiology A: Chemistry, 94(2–3), 217–220. https://doi.org/10.1016/1010-6030(95)04222-9

Woldu, A. R., Ayele, D. W., Habtu, N. G., & Tsigie, Y. A. (2020). Anthocyanin components for dye-sensitized solar cells extracted from Teclea Shimperi fruit as light-harvesting materials. Materials Science for Energy Technologies, 3, 889–895. https://doi.org/10.1016/j.mset.2020.11.001

Worsfold, P. J. (2005). Spectrophotometry: Overview. In Encyclopedia of Analytical Science (2nd Ed., pp. 318–321). Elsevier Ltd.

Yahya, M., Bouziani, A., Ocak, C., Seferoğlu, Z., & Sillanpää, M. (2021). Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. Dyes and Pigments, 192(February). https://doi.org/10.1016/j.dyepig.2021.109227

Yamazaki, E., Murayama, M., Nishikawa, N., Hashimoto, N., Shoyama, M., & Kurita, O. (2007). Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Solar Energy, 81(4), 512–516. https://doi.org/10.1016/j.solener.2006.08.003

Yusoff, A., Kumara, N. T. R. N., Lim, A., Ekanayake, P., & Tennakoon, K. U. (2014). Impacts of temperature on the stability of tropical plant pigments as sensitizers for dye sensitized solar cells. Journal of Biophysics, 2014. https://doi.org/10.1155/2014/739514

Zdyb, A., & Krawczyk, S. (2019). Natural Flavonoids as Potential Photosensitizers for Dye-Sensitized Solar Cells. Ecological Chemistry and Engineering S, 26(1), 29–36. https://doi.org/10.1515/eces-2019-0016

Zhang, D., Lanier, S. M., Downing, J. A., Avent, J. L., Lum, J., & McHale, J. L. (2008). Betalain pigments for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 195(1), 72–80. https://doi.org/10.1016/j.jphotochem. 2007.07.038

Zhou, H., Wu, L., Gao, Y., & Ma, T. (2011). Dye-sensitized solar cells using 20 natural dyes as sensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 219(2–3), 188–194. https://doi.org/10.1016/j.jphotochem.2011.02.008




DOI: https://doi.org/10.33394/hjkk.v12i6.13441

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.