Effectiveness of Antioxidant Compounds in Swallow's Nest from Lombok

Alvin Juniawan, Arista Suci Andini, Halia Wanadiatri

Abstract


This study investigated the antioxidant activity of swallow nests known as Edible Bird Nests (EBNs) derived from the swallow species Collocalia linchi, especially those sourced from Lombok, Indonesia with various health benefits, including their potential as antioxidants. This study used swallow nest samples taken from 3 different locations, namely: East Lombok, Central Lombok and West Lombok. The extraction method used is heating and sonication. Antioxidant activity was assessed quantitatively using the DPPH method and measured by UV-Vis spectrophotometry. Results showed varying IC50 values across different extraction times, with the highest values recorded at 3818.47 mg/mL and the lowest at 2331.47 mg/mL, compared to the control (ascorbic acid) at 35.22 mg/mL. The higher the IC50 value, the lower the effectiveness of antioxidants and vice versa. These findings suggest that the antioxidant activity of EBNs extracts is relatively weak when compared to ascorbic acid. This study contributes to the understanding of optimized extraction techniques by heating and sonication to unlock the full potential of the extraction results of bioactive compounds.


Keywords


antioxidant; sonication; swallow's nest

Full Text:

PDF

References


An economic nesting ground. (2018, October 10). Nationthailand. https://www.nationthailand.com/perspective/30356222

Bai, W., Liu, X., Fan, Q., Lian, J., & Guo, B. (2023). Study of the antiaging effects of bird’s nest peptide based on biochemical, cellular, and animal models. Journal of Functional Foods, 103, 105479. https://doi.org/10.1016/j.jff.2023.105479

Bikaki, M., Shah, R., Müller, A., & Kuhnert, N. (2021). Heat induced hydrolytic cleavage of the peptide bond in dietary peptides and proteins in food processing. Food Chemistry, 357, 129621. https://doi.org/10.1016/j.foodchem.2021.129621

Celiz, G., Renfige, M., & Finetti, M. (2020). Spectral analysis allows using the DPPH* UV–Vis assay to estimate antioxidant activity of colored compounds. Chemical Papers, 74(9), 3101–3109. https://doi.org/10.1007/s11696-020-01110-8

Cheeseman, J., Kuhnle, G., Spencer, D. I. R., & Osborn, H. M. I. (2021). Assays for the identification and quantification of sialic acids: Challenges, opportunities and future perspectives. Bioorganic & Medicinal Chemistry, 30, 115882. https://doi.org/10.1016/j.bmc.2020.115882

Chok, K. C., Ng, M. G., Ng, K. Y., Koh, R. Y., Tiong, Y. L., & Chye, S. M. (2021). Edible Bird’s Nest: Recent Updates and Industry Insights Based On Laboratory Findings. Frontiers in Pharmacology, 12, 746656. https://doi.org/10.3389/fphar.2021.746656

Choy, K. W., Zain, Z. M., Murugan, D. D., Giribabu, N., Zamakshshari, N. H., Lim, Y. M., & Mustafa, M. R. (2021). Effect of Hydrolyzed Bird’s Nest on β-Cell Function and Insulin Signaling in Type 2 Diabetic Mice. Frontiers in Pharmacology, 12. https://www.frontiersin.org/articles/10.3389/fphar.2021.632169

Chua, L. S., & Zukefli, S. N. (2016). A comprehensive review of edible bird nests and swiftlet farming. Journal of Integrative Medicine, 14(6), 415–428. https://doi.org/10.1016/S2095-4964(16)60282-0

ChuYan, W., LiJun, C., Bing, S., ZhiLing, Y., YanQiu, F., & ShuHuan, L. (2019). Antihypertensive and antioxidant properties of sialic acid, the major component of edible bird’s nests. Current Topics in Nutraceutical Research, 17(4), 376–379.

de Menezes, B. B., Frescura, L. M., Duarte, R., Villetti, M. A., & da Rosa, M. B. (2021). A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC50 determination by UV–Vis spectroscopy. Analytica Chimica Acta, 1157, 338398. https://doi.org/10.1016/j.aca.2021.338398

Gan, J. Y., Chang, L. S., Mat Nasir, N. A., Babji, A. S., & Lim, S. J. (2020). Evaluation of physicochemical properties, amino acid profile and bioactivities of edible Bird’s nest hydrolysate as affected by drying methods. LWT, 131, 109777. https://doi.org/10.1016/j.lwt.2020.109777

Garcia-Molina, P., Garcia-Molina, F., Teruel-Puche, J. A., Rodriguez-Lopez, J. N., Garcia-Canovas, F., & Muñoz-Muñoz, J. L. (2022). The Relationship between the IC50 Values and the Apparent Inhibition Constant in the Study of Inhibitors of Tyrosinase Diphenolase Activity Helps Confirm the Mechanism of Inhibition. Molecules, 27(10), 3141. https://doi.org/10.3390/molecules27103141

Haghani, A., Mehrbod, P., Safi, N., Kadir, F. A. A., Omar, A. R., & Ideris, A. (2017). Edible bird’s nest modulate intracellular molecular pathways of influenza A virus infected cells. BMC Complementary and Alternative Medicine, 17(1), 22. https://doi.org/10.1186/s12906-016-1498-x

Harahap, M. A., Sjofjan, O., Radiati, L., Natsir, H., Syahputra, R., & Nurkolis, F. (2023). A current insight and future perspective of edible bird nest as caviar of the east. Pharmacia, 70, 1135–1155. https://doi.org/10.3897/pharmacia.70.e112494

Ito, Y., Matsumoto, K., Usup, A., & Yamamoto, Y. (2021). A sustainable way of agricultural livelihood: Edible bird’s nests in Indonesia. Ecosystem Health and Sustainability, 7(1), 1960200. https://doi.org/10.1080/20964129.2021.1960200

Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1

Lee, C. H., Lee, T. H., Wong, S. L., Nyakuma, B. B., Hamdan, N., Khoo, S. C., Ramachandran, H., & Jamaluddin, H. (2023). Characteristics and trends in global Edible Bird’s Nest (EBN) research (2002–2021): A review and bibliometric study. Journal of Food Measurement and Characterization, 17(5), 4905–4926. https://doi.org/10.1007/s11694-023-02006-3

Lee, T., Wani, W., Lee, C. H., Cheng, K., Shreaz, S., Syie Luing, W., Hamdan, N., & Azmi, A. (2021). Edible Bird’s Nest: The Functional Values of the Prized Animal-Based Bioproduct From Southeast Asia–A Review. Frontiers in Pharmacology, 12, 626233. https://doi.org/10.3389/fphar.2021.626233

Loh, S.-P., Cheng, S.-H., & Mohamed, W. (2022). Edible Bird’s Nest as a Potential Cognitive Enhancer. Frontiers in Neurology, 13, 865671. https://doi.org/10.3389/fneur.2022.865671

Ma, F., & Liu, D. (2012). Sketch of the edible bird’s nest and its important bioactivities. Food Research International, 48(2), 559–567. https://doi.org/10.1016/j.foodres.2012.06.001

Martinez-Morales, F., Alonso-Castro, A. J., Zapata-Morales, J. R., Carranza-Álvarez, C., & Aragon-Martinez, O. H. (2020). Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chemical Papers, 74(10), 3325–3334. https://doi.org/10.1007/s11696-020-01161-x

Munteanu, I. G., & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380

Nasir, N. N. M., Ibrahim, R. M., Bakar, M. Z. A., Mahmud, R., & Razak, N. A. A. (2021). Characterization and Extraction Influence Protein Profiling of Edible Bird’s Nest. Foods, 10(10), 2248. https://doi.org/10.3390/foods10102248

Olszowy-Tomczyk, M. (2021). How to express the antioxidant properties of substances properly? Chemical Papers, 75(12), 6157–6167. https://doi.org/10.1007/s11696-021-01799-1

Prasetyo, E., Kiromah, N. Z. W., & Rahayu, T. P. (2021). Uji Aktivitas Antioksidan Menggunakan Metode DPPH (2,2-difenil-1-pikrilhidrazil) Terhadap Ekstrak Etanol Kulit Buah Durian (Durio zibethinnus L.) dari Desa Alasmalang Kabupaten Banyumas. Jurnal Pharmascience, 8(1), Article 1. https://doi.org/10.20527/jps.v8i1.9200

Ranjha, M., Irfan, S., Lorenzo, J. M., Shafique, B., Kanwal, R., Pateiro, M., Arshad, R., Wang, L., Nayik, G., & Qazalbash, U. (2021). Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes, 9, 1406. https://doi.org/10.3390/pr9081406

Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., & Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101, 106646. https://doi.org/10.1016/j.ultsonch.2023.106646

Thorburn, C. (2014). The Edible Birds’ Nest Boom in Indonesia and South-east Asia: A Nested Political Ecology. Food, Culture and Society: An International Journal of MultidisciplinaryResearch, 17. https://doi.org/10.2752/175174414X14006746101439

Wang, C.-Y., Cheng, L.-J., Shen, B., Yuan, Z.-L., Feng, Y.-Q., & Lu, S. (2019). Antihypertensive and Antioxidant Properties of Sialic Acid, the Major Component of Edible Bird’s Nests. Current Topics in Nutraceutical Research, 17(4), 376–380.

Wong, R. S. Y. (2013). Edible bird’s nest: Food or medicine? Chinese Journal of Integrative Medicine, 19(9), 643–649. https://doi.org/10.1007/s11655-013-1563-y




DOI: https://doi.org/10.33394/hjkk.v12i5.13169

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.