Analysis of Correction for the Indonesian People's Accelerograph (ARI) based on MEMS ADXL 355

Adji Satrio, Nurul Hidayat, Agustya Adi Martha, Handi Sulistyo Widodo, Hapsoro Agung Nugroho, Rafi Syah Akram, Bayu Sutejo, Tio Azhar Prakoso

Abstract


Indonesia, geographically situated on the Pacific Ring of Fire, has one of the highest potentials for earthquake and tsunami disasters worldwide, second only to Japan. These seismic events pose significant threats, including loss of life and infrastructure damage. One of the key strategies to mitigate earthquake risks is the implementation of Earthquake Early Warning System (EEWS) technology, which heavily relies on the spatial distribution of accelerographs. The Indonesian People's Accelerograph (ARI) has been designed as an affordable and independently built solution to record ground vibration acceleration, utilizing the MEMS-based ADXL 355 sensor and an ESP32 microcontroller for efficient EEWS implementation. This study focuses on the development and correction of the ARI system to enhance instrument response accuracy by analyzing ground acceleration vibration data through an inversion-based method applied to ARI recordings. The results demonstrated that the ARI accelerograph exhibits pole values of 1.31260317e-07 and -2.43562359e-02, zero values of -1.23898531e-06 and 2.77232055, and a gain of 72.97. These findings confirm that the ARI accelerograph provides reliable seismic data, highlighting its potential as an essential tool in reducing earthquake risk and mitigating seismic disaster impacts through improved earthquake early warning capabilities.


Keywords


accelerograph; MEMS; earthquake; gain; poles; zeros

Full Text:

PDF

References


Alteriis, G. d., Accardo, D., Conte, C., & Moriello, R. S. L. (2021). Performance Enhancement of Consumer-Grade MEMS Sensors Through Geometrical Redundancy. Sensors, 21(14), 4851. https://doi.org/10.3390/s21144851

Babić, R., Babić, L., & Jakšić, B. (2018). New Aspect of Transition Between Line and Continuous Spectrum and Its Relation to Seismic Influence on Structures. Scientia Iranica, 0(0), 0–0. https://doi.org/10.24200/sci.2018.20326

Bilal, M., Ji, Y., Wang, Y., Akhter, M. P., & Yaqub, M. (2022). Early Earthquake Detection Using Batch Normalization Graph Convolutional Neural Network (BNGCNN). Applied Sciences, 12(15), 7548. https://doi.org/10.3390/app12157548

BMKG. (2024). Senpi-Pusat Seimotek-Geopotensial dan Tanda Waktu. https://simora.bmkg.go.id/simora/web/alat_seismotek

Bossu, R., Finazzi, F., Steed, R., Fallou, L., & Bondár, I. (2021). “Shaking in 5 Seconds!”—Performance and User Appreciation Assessment of the Earthquake Network Smartphone-Based Public Earthquake Early Warning System. Seismological Research Letters, 93(1), 137–148. https://doi.org/10.1785/0220210180

Bravo-Haro, M., Ding, X., & Elghazouli, A. Y. (2021). MEMS-based Low-Cost and Open-Source Accelerograph for Earthquake Strong-Motion. Engineering Structures, 230, 111675. https://doi.org/10.1016/j.engstruct.2020.111675

Cascone, V., Boaga, J., & Cassiani, G. (2021). Small Local Earthquake Detection Using Low-Cost MEMS Accelerometers: Examples in Northern and Central Italy. The Seismic Record, 1(1), 20–26. https://doi.org/10.1785/0320210007

Chandrakumar, C., Prasanna, R., Stephens, M., & Tan, M. L. (2022). Earthquake Early Warning Systems Based on Low-Cost Ground Motion Sensors: A Systematic Literature Review. Frontiers in Sensors, 3. https://doi.org/10.3389/fsens.2022.1020202

Chen, L. (2022). Use of Transmission and Reflection Complex Time Delays to Reveal Scattering Matrix Poles and Zeros: Example of the Ring Graph. https://doi.org/10.48550/arxiv.2202.13539

Cremen, G., & Galasso, C. (2020). Earthquake early warning: Recent advances and perspectives. Earth-Science Reviews, 205, 103184. https://doi.org/10.1016/j.earscirev.2020.103184

Delden, A. v., Scholtus, S., Waal, T. d., & Csorba, I. (2023). Methods for Estimating the Quality of Multisource Statistics. 781–804. https://doi.org/10.1002/9781119672333.ch34

D’Emilia, G., Gaspari, A., Natale, E., Prato, A., Mazzoleni, F., & Schiavi, A. (2021). Managing the Sampling Rate Variability of Digital MEMS Accelerometers in Dynamic Calibration. https://doi.org/10.1109/metroind4.0iot51437.2021.9488520

Ehirim, C. N., & Akpan, A. S. (2017). Continuous Wavelet Transform Based Spectral Decomposition of 3d Seismic Data for Reservoir Characterization in Oyi Field, Se Niger Delta. American Journal of Applied Sciences, 14(8), 766–771. https://doi.org/10.3844/ajassp.2017.766.771

Esposito, M., Marzorati, S., Belli, A., Ladina, C., Palma, L., Calamita, C., Pantaleo, D., & Pierleoni, P. (2024). Low-Cost MEMS Accelerometers for Earthquake Early Warning Systems: A Dataset Collected During Seismic Events in Central Italy. Data in Brief, 53, 110174. https://doi.org/10.1016/j.dib.2024.110174

Fu, J., Li, Z., Meng, H., Wang, J., & Shan, X. (2019). Performance Evaluation of Low-Cost Seismic Sensors for Dense Earthquake Early Warning: 2018–2019 Field Testing in Southwest China. Sensors, 19(9), 1999. https://doi.org/10.3390/s19091999

Gunoro, G., Suprapto, S., Iriani, J., Sundawa, B. V., Abdullah, A., & Cholish. (2023). Design of Earthquake Warning Alarm Using Accelerometer Sensor Based on Internet of Things. International Journal of Research in Vocational Studies (Ijrvocas), 3(1), 32–35. https://doi.org/10.53893/ijrvocas.v3i1.194

Han, W., & Kim, N. (2018). Pole-Zero Fitting for Transfer Function of Hearing-Aid Receiver: Evidence-Based Review. Journal of Audiology & Otology. https://doi.org/10.7874/jao.2018.00073

Hilborne, V., & Roffey, A. (2020). From Characterisation to Validation: A Journey Through Master’s Level Analytical Chemistry. 12. https://doi.org/10.3390/proceedings2020055012

Hooijberg, E. H., Steenkamp, G., Preez, J. P. d., & Goddard, A. (2017). Analytic and Quality Control Validation and Assessment of Field Performance of a Point‐of‐care Chemistry Analyzer for Use in the White Rhinoceros. Veterinary Clinical Pathology, 46(1), 100–110. https://doi.org/10.1111/vcp.12456

Hu, X., Wang, X., Chen, B., Li, C., Tang, Y.-X., Shen, X., Zhong, Y., Chen, Z., & Teng, Y. (2021). Improved Resolution and Cost Performance of Low-Cost MEMS Seismic Sensor Through Parallel Acquisition. Sensors, 21(23), 7970. https://doi.org/10.3390/s21237970

Huang, H., Klingelhoëfer, F., Qiu, X., Li, Y., & Wang, P. (2021). Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 40(2). https://doi.org/10.1029/2020tc006260

Islam, M. M., Tsujikawa, T., Mori, T., Kiyono, Y., & Okazawa, H. (2017). Pixel-by-Pixel Precise Delay Correction for Measurement of Cerebral Hemodynamic Parameters in H2 15O PET Study. Annals of Nuclear Medicine, 31(4), 283–294. https://doi.org/10.1007/s12149-017-1156-5

Ji, G., & Wang, C. (2022). A Denoising Method for Seismic Data Based on SVD and Deep Learning. Applied Sciences, 12(24), 12840. https://doi.org/10.3390/app122412840

Jia, J., & Ye, W. (2023). Deep Learning for Earthquake Disaster Assessment: Objects, Data, Models, Stages, Challenges, and Opportunities. Remote Sensing, 15(16), 4098. https://doi.org/10.3390/rs15164098

Kong, Q., Martin‐Short, R., & Allen, R. M. (2020). Toward Global Earthquake Early Warning With the MyShake Smartphone Seismic Network, Part 1: Simulation Platform and Detection Algorithm. Seismological Research Letters, 91(4), 2206–2217. https://doi.org/10.1785/0220190177

Krokidis, S. G., Vlachos, I., Avlonitis, M., Kostoglou, A., & Karakostas, V. (2022). Data-Driven Performance Evaluation of a Low-Cost Seismograph. Measurement and Control, 55(5–6), 340–358. https://doi.org/10.1177/00202940211064448

Landi, E., Prato, A., Fort, A., Mugnaini, M., Vignoli, V., Facello, A., Mazzoleni, F., Murgia, M., & Schiavi, A. (2023). Highly Reliable Multicomponent MEMS Sensor for Predictive Maintenance Management of Rolling Bearings. Micromachines, 14(2), 376. https://doi.org/10.3390/mi14020376

Li, J., Hei, D., Cui, G., He, M., Wang, J., Liu, Z., Shang, J., Wang, X., & Wang, W. (2021). GAN-LSTM Joint Network Applied to Seismic Array Noise Signal Recognition. Applied Sciences, 11(21), 9987. https://doi.org/10.3390/app11219987

Lim, J., Jung, S., JeGal, C., Jung, G., Yoo, J. H., Gahm, J. K., & Song, G. (2022). LEQNet: Light Earthquake Deep Neural Network for Earthquake Detection and Phase Picking. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.848237

Łuczak, S., Ekwińska, M., & Tomaszewski, D. (2024). A Method of Precise Auto-Calibration in a Micro-Electro-Mechanical System Accelerometer. Sensors, 24(12), 4018. https://doi.org/10.3390/s24124018

Lutti, A., Corbin, N., Ashburner, J., Ziegler, G., Draganski, B., Phillips, C., Kherif, F., Callaghan, M. F., & Domenicantonio, G. D. (2022). Restoring Statistical Validity in Group Analyses of Motion‐corrupted MRI Data. Human Brain Mapping, 43(6), 1973–1983. https://doi.org/10.1002/hbm.25767

Ma, K., Wu, J., Ma, Y., Xu, B., Qi, S., & Jiang, X. (2023). An Effective Method for Improving Low-Frequency Response of Geophone. Sensors, 23(6), 3082. https://doi.org/10.3390/s23063082

Manglik, A. (2023). INSA National Report on Seismological Research in India: 2019 – 2022. https://doi.org/10.22541/au.167907615.52090686/v1

Maslovskyi, V. (2022). Gender-Age Features and Possibilities of Predicting the Quality of Life in Patients With Myocardial Infarction Without Elevation of ST-segment. Bulletin of Medical and Biological Research, 4(1), 118–121. https://doi.org/10.11603/bmbr.2706-6290.2022.1.12744

Merrill, J. H., Han, Y., & Roth, C. (2024). A Bayesian Inference Approach to Accurately Fitting the Glass Transition Temperature in Thin Polymer Films. Macromolecules, 57(23), 11055–11074. https://doi.org/10.1021/acs.macromol.4c01867

Muir, J. B., & Zhan, Z. (2021). Wavefield-Based Evaluation of DAS Instrument Response and Array Design. Geophysical Journal International, 229(1), 21–34. https://doi.org/10.1093/gji/ggab439

Munyithya, J. M., Ehirim, C. N., Dagogo, T., & K’orowe, M. O. (2020). Seismic Amplitudes and Spectral Attribute Analysis in Reservoir Characterisation, ‘MUN’ Onshore Niger Delta Field. Journal of Petroleum Exploration and Production Technology, 10(6), 2257–2267. https://doi.org/10.1007/s13202-020-00917-1

Nof, R. N., Chung, A., Rademacher, H., Dengler, L., & Allen, R. M. (2019). MEMS Accelerometer Mini-Array (MAMA): A Low-Cost Implementation for Earthquake Early Warning Enhancement. Earthquake Spectra, 35(1), 21–38. https://doi.org/10.1193/021218eqs036m

Papanikolaou, V. K., Karakostas, C., & Theodoulidis, N. (2021). A Low-Cost Instrumentation System for Seismic Hazard Assessment in Urban Areas. Sensors, 21(11), 3618. https://doi.org/10.3390/s21113618

Patanè, D., Tusa, G., Yang, W., Astuti, A., Colino, A., Costanza, A., D’Anna, G., Prima, S. D., Fertitta, G., Mangiagli, S., Martino, C., & Torrisi, O. (2022). The Urban Seismic Observatory of Catania (Italy): A Real-Time Seismic Monitoring at Urban Scale. Remote Sensing, 14(11), 2583. https://doi.org/10.3390/rs14112583

Peng, C., Jiang, P., Chen, Q., Ma, Q., & Yang, J. (2019). Performance Evaluation of a Dense MEMS-Based Seismic Sensor Array Deployed in the Sichuan-Yunnan Border Region for Earthquake Early Warning. Micromachines, 10(11), 735. https://doi.org/10.3390/mi10110735

Phung, V.-B., Loh, C. H., Chao, S. H., Chiou, B., & Huang, B. (2020). Ground Motion Prediction Equation for Crustal Earthquakes in Taiwan. Earthquake Spectra, 36(4), 2129–2164. https://doi.org/10.1177/8755293020919415

Pollo, C. F., Meneguin, S., & Miot, H. A. (2018). Evaluation Instruments for Quality of Life Related to Melasma: An Integrative Review. Clinics, 73, e65. https://doi.org/10.6061/clinics/2018/e65

Prato, A., Mazzoleni, F., D’Emilia, G., Gaspari, A., Natale, E., & Schiavi, A. (2021). Metrological Traceability of a Digital 3-Axis MEMS Accelerometers Sensor Network. Measurement, 184, 109925. https://doi.org/10.1016/j.measurement.2021.109925

Rodriguez, I. V., & Myklebust, E. B. (2022). Deep Compressed Seismic Learning for Fast Location and Moment Tensor Inferences With Natural and Induced Seismicity. https://doi.org/10.31223/x5v34q

Scafidi, D., Viganò, A., Boaga, J., Cascone, V., Barani, S., Spallarossa, D., Ferretti, G., Carli, M., & Marchi, G. D. (2024). A Dense Micro-Electromechanical System (MEMS)-based Seismic Network in Populated Areas: Rapid Estimation of Exposure Maps in Trentino (NE Italy). Natural Hazards and Earth System Science, 24(4), 1249–1260. https://doi.org/10.5194/nhess-24-1249-2024

Schiavi, A., Prato, A., Mazzoleni, F., Facello, A., & Kwitonda, A. (2023). Metrological Characterization of Digital Mems Accelerometers in Dynamic Conditions: An Investigation of Linearity in Amplitude and Temperature Effects. 1–4. https://doi.org/10.21014/tc22-2022.033

Shi, L., Jensen, J. R., & Christensen, M. G. (2017). Least 1-Norm Pole-Zero Modeling With Sparse Deconvolution for Speech Analysis. 731–735. https://doi.org/10.1109/icassp.2017.7952252

Tahir, M. A. R., Saleem, M. M., Bukhari, S. A. R., Hamza, A., & Shakoor, R. I. (2021). An Efficient Design of Dual-Axis MEMS Accelerometer Considering Microfabrication Process Limitations and Operating Environment Variations. Microelectronics International, 38(4), 144–156. https://doi.org/10.1108/mi-02-2021-0023

Tang, L., Jin, L., Chen, J., Wang, S., Wang, R., & Hu, X. (2020). Seismic Impact of Large Earthquakes on Estimating Global Mean Ocean Mass Change From GRACE. Remote Sensing, 12(6), 935. https://doi.org/10.3390/rs12060935

Tang, M., Huang, B., Xie, R., & Chen, Z. (2023). A Seismic Inversion Method Based on Multi-Scale Super-Asymmetric Cycle-JNet Network. Applied Sciences, 14(1), 242. https://doi.org/10.3390/app14010242

Varanis, M., Silva, A., Mereles, A., & Pederiva, R. (2018). MEMS Accelerometers for Mechanical Vibrations Analysis: A Comprehensive Review With Applications. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(11). https://doi.org/10.1007/s40430-018-1445-5

Viswanatha, V., Reddy, R., & Rajeswari. (2020). Characterization of Analog and Digital Control Loops for Bidirectional Buck–boost Converter Using PID/PIDN Algorithms. Journal of Electrical Systems and Information Technology, 7(1). https://doi.org/10.1186/s43067-020-00015-6

Westwood, R., Westwood, A. R., Hooshmandi, M., Pearson, K., LaFrance, K., & Murray, C. (2019). A Field‐validated Species Distribution Model to Support Management of the Critically Endangered Poweshiek Skipperling (Oarisma Poweshiek) Butterfly in Canada. Conservation Science and Practice, 2(3). https://doi.org/10.1111/csp2.163

Wu, A., Shin, J., Ahn, J.-K., & Kwon, Y. (2021). Augmenting Seismic Data Using Generative Adversarial Network for Low-Cost MEMS Sensors. Ieee Access, 9, 167140–167153. https://doi.org/10.1109/access.2021.3132901

Wu, Y., & Mittal, H. (2021). A Review on the Development of Earthquake Warning System Using Low-Cost Sensors in Taiwan. Sensors, 21(22), 7649. https://doi.org/10.3390/s21227649

Xie, J., An, Z., Fu, L., Li, K., Li, X., Wen, Z., Cui, J., Lin, G., & Wang, P. (2021). Strong Ground Motions From the 21 May 2021 M6.4 Yangbi Earthquake in Western China Obtained From a Dense Network of Accelerographs and Intensity Meters. https://doi.org/10.21203/rs.3.rs-977960/v1

Yang, B. M., Mittal, H., & Wu, Y. (2021). Real-Time Production of PGA, PGV, Intensity, and Sa Shakemaps Using Dense MEMS-Based Sensors in Taiwan. Sensors, 21(3), 943. https://doi.org/10.3390/s21030943

Yang, X., Gao, Y., Zhang, W., Wang, Y., & Lan, M. (2019). Polarization Filtering Method for Suppressing Surface Wave in Time-Frequency Domain. International Journal of Geosciences, 10(04), 481–490. https://doi.org/10.4236/ijg.2019.104028

Zhang, W., Li, H., Li, L., Huang, W., & Wu, Q. (2022). Fiber Optic Sensors for Seismic Wave Detection. 150. https://doi.org/10.1117/12.2654743

Zhao, H., Zhou, Y., Bai, T., & Chen, Y. (2023). A U-Net Based Multi-Scale Deformable Convolution Network for Seismic Random Noise Suppression. Remote Sensing, 15(18), 4569. https://doi.org/10.3390/rs15184569

Zhao, J., Li, Z., Gao, Q., Zhao, H., Chen, S., Huang, L., Wang, W., & Wang, T. (2021). A Review of Statistical Methods for Dietary Pattern Analysis. Nutrition Journal, 20(1). https://doi.org/10.1186/s12937-021-00692-7




DOI: https://doi.org/10.33394/j-ps.v13i2.15139

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Adji Satrio, Nurul Hidayat, Agustya Adi Martha, Handi Sulistyo Widodo, Hapsoro Agung Nugroho, Rafi Syah Akram, Bayu Sutejo, Tio Azhar Prakoso

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License
J-PS (Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram) p-ISSN (print) 2338-4530, e-ISSN (online) 2540-7899 is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats