Cover Image

The Effect of Concentration of Titanium Dioxide Nanoparticles on Their Antibacterial Activity in the Synthesis of Polyurethane Biopolymers

Andi Budirohmi, Yanti Mustari, Yunita Suriani, Vivi Adriana, Hasnah Natsir

Abstract


In the health sector, the use of polyurethane (PU) as a basic material for medical devices still causes problems related to local and systemic infections. One of the most appropriate ways to overcome this problem is to synthesize PU biopolymer with titanium dioxide (TiO2) nanoparticles. The use of nano-shaped materials in this synthesis has many advantages, including being easier to synthesize and being antibacterial. Meanwhile, starch is the result of isolation from banana weevils, where banana weevils are agricultural waste that has not been utilized properly. Particle size and the use of agricultural waste are a form of modification and innovation in PU synthesis, as well as a novelty in the development of this research. In PU synthesis, several characterization techniques are carried out, including polymer tests, namely strain and stress, functional group analysis using (Fourier Transform Infra-Red), and antibacterial tests. Based on the results of the FTIR test analysis, it show that at a wave number of 1724.36 cm-1, the N-H functional group is visible, and the absorption of urethane and TiO2 groups is in the range of 513.07 cm-1. The mechanical properties test shows the strain (28.92 - 21.88% GL) and young's modulus in the interval (5.484-3.268 MPa). The antibacterial test showed that the inhibitory power of test samples A1 and A4 with diameters of 8 mm and 8 mm proved to be very effective in killing E. Coli bacteria, while test samples A1¹, A2¹, A3¹, and A4 were not able to kill E. Coli bacteria. S. Aureus. bacteria. The characterization results show that PU biopolymer can be used as a basic material for making bacterial decontaminant medical devices.


Keywords


synthesis, nanoparticle TiO2, PU, antibacterial

Full Text:

PDF

References


Adnan, A., Aneela, S., Sadia, S., Bassem, F. F., Tabinda, R., Ali, B., Nazia, H., Rafi, U.K.,& Fawad Inam. (2022). Novel Antibacterial Polyurethane and Cellulose Acetate Mixed Matrix Membrane Modified with Functionalized Tio2 Nanoparticles for Water Treatment.J Chemosphere. (301), 1-7.

Angiolillo, D.J., Fernandez,O.,A, Bernardo, E., Alfonso, F., Macaya, C., & Bass, T.A. (2007). Variability in Individual Responsiveness to Clopidogrel. Clinical Implications, Management, and Future Perspectives. Journal of the American College of Cardiology. 49 (14), 1505–1516.

Andi Budirohmi., Ahyar,A., Firdaus.,&Paulina,T. (2020). Characterization and TiO2- Catalyzed Degradation of Polyurethane Biopolymer Through Medium Pro Compos. Oriental Journal of Chemistry. (36), 161-165.

Aranguren, M,I., Marcovich,N.E.,& Mosiewicki.M.A.(2015).Mechanical Performance of Polyurethane (PU)-Based Biocomposites. J.Woodhead Publishing Series in Composites Science and Engineering . 465-485.

Baama, K & Sundarjan,M. (2017). Ag/Tio2/Bentonite Nanocomposite for Biological Applications: Synthesis, Characterization, Antibacterial and Cytotoxic Investigations. J. Advanced Powder Technologi. (28), 2265–2280.

Changhua, Y., Can, L., Liang, X., Min N.,& Qi Wang. (2023). Flow-Induced Alignment of Titanium Dioxide Nanorods in Polyolefin Tubes for Use in Catheters. Journal Materials & Design.(233),1-8.

Duan, J.H., Yin,F.,&Jiang,G.S. (2016). Synthesis and Simultaneous Self-Assembly of Novel Antibacterial Polyurethanes. IOP Conf. Sers: Mater. Sci. Eng. (137 01202), 1-5.

Francolini,I.,& PiozziA.(2016). Antimicrobial Polyurethanes for Intravascular Medical Devices. Journal Advances in Polyurethane Biomaterials. (12), 349-381.

Ghazal, K., Reza, B., Ali, P., &Hossein,G. (2020). In Situ Synthesized Tio2-Polyurethane Nanocomposite for Bypass Graft Application: in Vitro Endothelialization and Degradation. Journal Materials Science & Engineering C. (114),1-10.

Husnul, H. (2018). Pengaruh Ion Hg(II) Terhadap Efektivitas Fotoreduksi Ion Cu(II) Terkatalisis TiO2 dalam Limbah Cair Industri Kerajinan Perak di Desa Ungga Kec. Praya Lombok Tengah. Hydrogen: Jurnal Kependidikan Kimia. 01,(16),75-80.

Ioanna,G.A., Maria,M., Sofia, K., Petroula,T.,& Christos,T.(2018).Study of Thermomechanical and Antibacterial Properties of Tio2/Poly (Lactic Acid) Nanocomposites. Materials Today Journal. (5), 27553–27562.

Kuan, N.C., Fitri, N. I.,& Jyh, M,T.(2019). Multifunctional TiO2/polyacrylonitrile Nanofibers for High Efficiency PM2.5 Capture, UV Filter, and Anti-Bacteria Activity. J. Applied Surface Science.(493), 157- 164.

Malik,S.,Syahzad, T., &Waqas, A. (2014). Synthtysesis and Characterization of Flexible and Rigid Polyurethane Foam. Asian Journal of Applied Sciences. (02),701-710.

Nakkabi,A., Moulaki S., Ibnssouda.,& Moh Fahim,F.(2015).Biological Degradation of Polyurethane By A Newly Isolated Wood Bacterium. International Journal of Recent Advances in Multidisciplinary Research 02(02), 222-225.

Nandini, A. P. Geetha, B. H.,& Mahadevappa ,Y. K.(2017).Smart Biopolymers and Their Biomedical Applications. Journal Procedia Manufacturing. (12), 263 – 279.

Nursin.,Laily,N., Imran.,& Rustam, M. (2019). Uji Aktivitas Antibakteri Staphylococcus Aureus dan Salmonella Typhi dari Hasil Mikroenkapsulasi Minyak Atsiri Rogo (Premna Serratifolia Linn). Hydrogen: Jurnal Kependidikan Kimia.02,(07),73-78.

Ping, W., Xiao, Wei, W,, Wen Jie, C.,Yi Tao, T., Yu Wang., Ze, Yu. G., Jie Hu, J. P.,& Xiao, T. (2019). Effect of TiO2 Nanoparticles on the Characteristics of MAO Coatings. International Journal of Electrochemical Science. (14), 9311 – 9325.

Poonsub, T., Chanirkam, W., Wirawan, I., Sunantha, S.,& Chanin, K. (2014). Effect of TiO2 and ZnO on Thin Film Properties of PET/PBS Blend for Food Packaging Applications. J.Energy Procedia.(56),102-111.

Quan, X. N., Tho Truong, N., Nhut Minh, P.,Toan Trong, K.T.,& Viet Van. (2022). A Fabrication of CNTs/TiO2/polyurethane Films Toward an Tibacterial and Protective Coatings. Journal Progress in Organic coatings. (167), 106838.

Razi,A.,& Meryam,S.(2013).TiO2 Nanoparticles As an Antibacterial Agents E.Coli. International Journal of Inovatif Research In Science Enginereng and Technology.(2),35693574.

Raden, R,Ariessanty.,Antoni, P.,& Emilda,P. (2020). Penentuan Nilai Sun Protection Factor (SPF) dan Uji Antibakteri Staphylococcus aureus Ekstrak Daun dan Kulit Batang Tanaman Bangkal (Nauclea Subdita). Hydrogen: Jurnal Kependidikan Kimia.02,(08), 47-57.

Salman, M., Azadeh, A., Hossein, A.K.,& Seyed, H.J.(2021). Improved Surface Properties in Spray-Coated PU/Tio2/Graphene Hybrid Nanocomposites Through Nonsolvent-Induced Phase Separation. Journal Surface and Coatings Technology. (405),106838.

Vignesh, K., Keerthi, M. N., Snehamol, M., John, B., James, E. K., Hugh, G.M.,Barry, J. W., Nigel, S. L.,& Suresh, C. P. (2021). Antimicrobial TiO2 Nanocomposite Coatings for Surfaces, Dental and Orthopaedic Implants. Chemical Engineering Journal.(416),1-19.

Xiao,W., Pin ting, L., Jin cheng, T., Chang jun, W., , Yan Yang., Zhi-li, Z.,& Da-peng, Z. (2021). Different Antibacterial Mechanisms of Titania Nanotube Arrays at Various Growth Phases of E. Coli. Journal Trans. Nonferrous Met. Soc. China. (31), 3821−3830.

Yuemei, C.,Yuanming, D., Yitao, P., Bijun, T., Yikun, S.,& Jiaoning,T.(2016). One Pot Preparation of Silver Nanoparticles Decorated TiO2 Mesoporous Microspheres with Enhanced Antibacterial Activity. Journal Materials Science and Engineering C.(65),27-32.




DOI: https://doi.org/10.33394/hjkk.v11i5.9021

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.