Adsorption of Nitrite (NO2-) Using Natural Zeolite and Natural Zeolite Modified with Cetyl Trimethylammonium Bromide (CTAB)

Ihsan Sofyan Hanan, Muhammad Fahmi Hakim Hakim, Teguh Pambudi

Abstract


Nitrite contamination in water is a critical environmental and public health concern due to its toxicity and persistence. This study investigates the adsorption of nitrite using activated natural zeolite and CTAB-modified zeolite through batch experiments. Natural zeolite was activated with 1M HCl to enhance its surface area, while modification with cetyl trimethylammonium bromide (CTAB) was performed to improve anion adsorption capacity. Adsorption experiments were conducted at different pH levels (2, 4, 6, 8) and contact times (10–90 minutes) using a 100 ppm nitrite solution, with 0.2 g of adsorbent in 50 mL solution. Residual nitrite concentrations were analyzed using UV-Vis spectrophotometry. The results showed that the optimum pH for activated zeolite was 4, with a residual nitrite concentration of 0.108 mg/L, whereas CTAB-modified zeolite performed best at pH 2, reducing nitrite to 0.005 mg/L. The optimal adsorption times were 60 minutes for activated zeolite (0.0106 mg/g) and 75 minutes for CTAB-modified zeolite (0.0156 mg/g). Kinetic analysis indicated that activated zeolite followed a pseudo-first-order model (R² = 0.950), while CTAB-modified zeolite was influenced by intraparticle diffusion (R² = 0.764). These findings highlight the potential of zeolites as efficient and cost-effective adsorbents for nitrite removal in wastewater treatment.

Keywords


nitrite adsorption; CTAB-modified zeolite; adsorption kinetics; optimum pH; adsorption time

Full Text:

PDF

References


Abdulredha, M., Kadhim, N. R., Hussein, A. H., Almutairi, M., Alkhaddar, R., Yeboah, D., & Hashim, K. (2021). Zeolite as a natural adsorbent for nitrogenous compounds being removed from water. IOP Conference Series: Materials Science and Engineering, 1067(1), 012082. https://doi.org/10.1088/1757-899X/1067/1/012082

Adawiah, S. R., Sutarno, S., & Suyanta, S. (2020). Studi Adsorpsi-Desorpsi Anion Fosfat Pada Bentonit Termodifikasi CTAB. Indo. J. Chem. Res., 8(2), 125–136. https://doi.org/10.30598//ijcr.2020.8-sra

Akbelen, M., & Ezber, Ç. (2019). Investigation of Thermal and Structural Properties of Nitric, Hydrochloric and Sulphuric Acid-Treated Zeolite. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 20, 114–119. https://doi.org/10.18038/ESTUBTDA.647910

Al Muttaqii, M., Birawidha, D. C., Isnugroho, K., Yamin, M., Hendronursito, Y., Istiqomah, A. D., & Dewangga, D. P. (2019). Pengaruh Aktivasi secara Kimia menggunakan Larutan Asam dan Basa terhadap Karakteristik Zeolit Alam. Jurnal Riset Teknologi Industri, 13(2), 266. https://doi.org/10.26578/jrti.v13i2.5577

Arianti, Y., & Oktavia, B. (2021). Optimization of Nitrate and Nitrite Anions Adsorption on Modified Silica using Batch Method. Journal of Physics: Conference Series, 1940(1), 012042. https://doi.org/10.1088/1742-6596/1940/1/012042

Arnelli, Santoso, B., & Astuti, Y. (2021). Modification of activated carbon of rice husk using HDTMA-Br (SMAC) surfactant as nitrite ion (NO2 −) adsorbent. Journal of Physics: Conference Series, 1943(1), 012159. https://doi.org/10.1088/1742-6596/1943/1/012159

Astuti, D. W., Mudasir, & Aprilita, N. H. (2019). Preparation and characterization adsorbent based on zeolite from Klaten, Central Java, Indonesia. Journal of Physics: Conference Series, 1156(1), 012002. https://doi.org/10.1088/1742-6596/1156/1/012002

Bețianu, C. S., Cozma, P., Roșca, M., Ungureanu, E. D. C., Mămăligă, I., & Gavrilescu, M. (2020). Sorption of Organic Pollutants onto Soils: Surface Diffusion Mechanism of Congo Red Azo Dye. Processes 2020, Vol. 8, Page 1639, 8(12), 1639. https://doi.org/10.3390/PR8121639

Chen, J., Wei, Y., Ji, H., Guo, P., Wan, D., Li, B., & Sun, X. (2021). Adsorption of nitrate and nitrite from aqueous solution by magnetic Mg/Fe hydrotalcite. Water Supply, 21(8), 4287–4300. https://doi.org/10.2166/WS.2021.184

de Gennaro, B. (2019). Surface modification of zeolites for environmental applications. Modified Clay and Zeolite Nanocomposite Materials: Environmental and Pharmaceutical Applications, 57–85. https://doi.org/10.1016/B978-0-12-814617-0.00009-8

El Hanache, L., Lebeau, B., Nouali, H., Toufaily, J., Hamieh, T., & Daou, T. J. (2019). Performance of surfactant-modified *BEA-type zeolite nanosponges for the removal of nitrate in contaminated water: Effect of the external surface. Journal of Hazardous Materials, 364, 206–217. https://doi.org/10.1016/J.JHAZMAT.2018.10.015

Harutyunyan, L. R., Tangamyan, L. S., Manukyan, A. V., & Harutyunyan, R. S. (2023). Characterization of Both Anionic and Cationic Surfactant-Modified Natural Zeolite and Its Application for Removal of Metal-Ions From Aqueous Medium. Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 31–40. https://doi.org/10.32434/0321-4095-2023-147-2-31-40

Hulyadi, H. (2017). Karakterisasi Zeolit Alam Selong Belanak Lombok sebagai Adsorben dalam Pemurnian Alkohol Fermentasi. Hydrogen: Jurnal Kependidikan Kimia, 5(1), 1–7. https://doi.org/10.33394/hjkk.v5i1.101

Karwowska, M., & Kononiuk, A. (2020). Nitrates/nitrites in food—Risk for nitrosative stress and benefits. In Antioxidants (Vol. 9, Issue 3, p. 241). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/antiox9030241

Kiranmai, M. S., & Raajitha, M. (2023). A Comprehensive Review on Chronotherapeutics. International Journal of Pharmaceutical Sciences and Medicine, 8(3), 82–108. https://doi.org/10.47760/ijpsm.2023.v08i03.007

Luetic, S., Knezovic, Z., Jurcic, K., Majic, Z., Tripkovic, K., & Sutlovic, D. (2023). Leafy Vegetable Nitrite and Nitrate Content: Potential Health Effects. Foods, 12(8). https://doi.org/10.3390/foods12081655

Mohamed Nasser, S., Abbas, M., & Trari, M. (2024). Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control. Progress in Reaction Kinetics and Mechanism, 49. https://doi.org/10.1177/14686783241226858/ASSET/IMAGES/LARGE/10.1177_14686783241226858-FIG4.JPEG

Musah, M., Azeh, Y., Mathew, J. T., Umar, M. T., Abdulhamid, Z., & Muhammad, A. I. (2022). Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26. https://doi.org/10.4314/CAJOST.V4I1.3

Nadhila, H. (2020). Analisis Kadar Nitrit Pada Air Bersih Dengan Metode Spektrofotometri Uv-Vis. Amina, 1(3), 131–138.

Ngapa, Y. D. (2017). Study of The Acid-Base Effect on Zeolite Activation and Its Characterization as Adsorbent of Methylene Blue Dye. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 2(2), 90–96. https://doi.org/10.20961/JKPK.V2I2.11904

Ogata, F., Nagai, N., Nakamura, T., & Kawasaki, N. (2019). Adsorption Capability of Fe-HT3.0 for Nitrite and Nitrate Ions in a Binary Solution System. Chemical & Pharmaceutical Bulletin, 67(10), 1168–1170. https://doi.org/10.1248/CPB.C19-00506

Picetti, R., Deeney, M., Pastorino, S., Miller, M. R., Shah, A., Leon, D. A., Dangour, A. D., & Green, R. (2022). Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environmental Research, 210, 112988. https://doi.org/10.1016/j.envres.2022.112988

Pohan, M. S. A., Sutarno, & Suyanta. (2016). Studi Adsorpsi-Desorpsi Anion Fosfat, Sulfat Dan Nitrat Pada Zeolit Termodifikasi Ctab. Jurnal Penelitian Sains, 18(3), 123–135.

Rasuli, L., Nasseri, S., & Hadi, M. (2020). Performance of surfactant-modified forms of clinoptilolite and pumice in nitrate removal from aqueous solution. Desalination and Water Treatment, 180, 227–236. https://doi.org/10.5004/DWT.2020.24861

Rezaei, H., Rastegar, S., & Naseri, S. (2019). Application of Chitosan and Activated Carbon Nano-composite in Removal of Nitrite, Phosphate, and Ammonia From Aquaculture Wastewater. Avicenna Journal of Environmental Health Engineering, 6(2), 106–112. https://doi.org/10.34172/AJEHE.2019.14

Sander, L. C., & Schantz, M. M. (2017). Preparation of Calibration Solutions. Journal of Research of the National Institute of Standards and Technology, 122. https://doi.org/10.6028/jres.122.009

Senila, L., Hoaghia, A., Moldovan, A., Török, I. A., Kovacs, D., Simedru, D., Tomoiag, C. H., & Senila, M. (2022). The Potential Application of Natural Clinoptilolite-Rich Zeolite as Support for Bacterial Community Formation for Wastewater Treatment. Materials, 15(10), 3685. https://doi.org/10.3390/ma15103685

Septommy, C., & Badriyah, L. (2022). Modifikasi Zeolit Alam Teraktivasi Asam dengan Perak Nitrat. CHEESA: Chemical Engineering Research Articles, 5(1), 13. https://doi.org/10.25273/cheesa.v5i1.10104.13-19

Singh, S., Jain, A., Tiwari, R., Kumar, N., & Tomar, R. (2019). Synthesis and Characterization of Surface Modified Zeolite and its Application as Adsorbent for Pesticide. International Journal of Materials Science, 14(1), 17–30.

Sivarama Krishna, L., Soontarapa, K., Asmel, N. K., Kabir, M. A., Yuzir, A., Wan Zuhairi, W. Y., & Sarala, Y. (2019). Adsorption of acid blue 25 from aqueous solution using zeolite and surfactant modified zeolite. Desalination and Water Treatment, 150, 348–360. https://doi.org/10.5004/DWT.2019.23726

Suhendar, H., Puspita, S., & Gabriella, A. (2023). Natural zeolite activation using chloride acid (HCl) for methylene blue adsorbent. Journal of Physics: Conference Series, 2596(1), 012013. https://doi.org/10.1088/1742-6596/2596/1/012013

Sumari, Sholihah, N., Aisiyah, M. M., Oktaviani, I., Khilmi, N., & Prakasa, Y. F. (2018). Effectiveness of Modified Natural Zeolite through Acid Activation as A Catalyst on Cellulose Conversion into Glucose from Cotton Assisted by Ultrasonic. Journal of Physics: Conference Series, 1093(1), 012011. https://doi.org/10.1088/1742-6596/1093/1/012011

Tararushkin, E. V., Pisarev, V. V., & Kalinichev, A. G. (2023). Interaction of Nitrite Ions with Hydrated Portlandite Surfaces: Atomistic Computer Simulation Study. Materials 2023, Vol. 16, Page 5026, 16(14), 5026. https://doi.org/10.3390/MA16145026

Terzi, M., & Özdemir, O. (2021). Effects of Hydrochloric and Acetic Acid Modification on the HTAB and K+ Adsorption Characteristics of Natural Zeolites. Deu Muhendislik Fakultesi Fen ve Muhendislik, 23(69), 1049–1056. https://doi.org/10.21205/DEUFMD.2021236930

Voga, G., & Zuran, I. (2016). Severe Methemoglobinemia due to Sodium Nitrite Poisoning. Case Reports in Emergency Medicine, 2016(1), 9013816. https://doi.org/10.1155/2016/9013816

Wu, S., Liu, Y., Cui, X., Zhang, Q., Wang, Y., Cao, L., Luo, X., Xiong, J., & Ruan, R. (2021). Assessment of potential nitrite safety risk of leafy vegetables after domestic cooking. Foods, 10(12), 2953. https://doi.org/10.3390/foods10122953




DOI: https://doi.org/10.33394/hjkk.v13i1.14643

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.