The Electrical Behaviour Study on Saltwater Batteries in Various Electrolyte Concentrations and Cross-Sectional Areas
Abstract
A study has been conducted to analyze the effect of various electrolyte concentrations and cross-sectional areas on voltage and current in batteries using the galvanic cell method (voltaic cells). This study aims to determine the electrolyte concentration and electrode cross-sectional area that provide optimal effects on voltage, current, and power in batteries. Variations in NaCl electrolyte concentration of 1 M; 3 M; 5 M; 7 M; and 9 M as electrolytes and variations in the cross-sectional area of Cu-Al 5 cm2, 10 cm2, 15 cm2, 20 cm2, 25 cm2 as electrodes. From these tests, the optimal voltage value was obtained at a concentration of 7 M and a cross-sectional area of 25 cm2 with a value of 0.73 V, the optimal current value at a concentration of 7 M and a cross-sectional area of 25 cm2 with a value of 19.99 mA, and the optimal power value at a concentration of 7 M and a cross-sectional area of 25 cm2 with a value of 14.593 mwatts. The larger the cross-sectional area of the electrode, the greater the electrical energy produced. The optimum concentration of electrolyte greatly influences the value of the electrical power produced.
Keywords
Full Text:
PDFReferences
Ali, Z. M., Jurado, F., Gandoman, F. H., & Ćalasan, M. (2024). Advancements in battery thermal management for electric vehicles: Types, technologies, and control strategies including deep learning methods. In Ain Shams Engineering Journal (Vol. 15, Issue 9). Ain Shams University. https://doi.org/10.1016/j.asej.2024.102908
Anisa, Z., & Erwanto, E. (2024). Potensi Pembangkit Listrik Tenaga Air Hujan Pltah Sebagai Sumber Energi Listrik Piranti Elektronik Rumah Tangga. Jurnal Rekayasa Mesin, 15(2), 1053–1065. https://doi.org/10.21776/jrm.v15i2.1671
Anisa, Z., & Setyaningrum, D. (2022). Pemanfaatan Elektrolit Air Laut Sebagai Sumber Energi Listrik Baterai Dengan Elektroda Tembaga – Aluminium. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 156–162. https://doi.org/10.31851/sainmatika.v19i2.9583
Anisa, Z., & Zainuri, M. (2020). Synthesis and Characterization of Lithium Iron Phosphate Carbon Composite (LFP/C) using Magnetite Sand Fe3O4. The Journal of Pure and Applied Chemistry Research, 9(1), 16–22. https://doi.org/10.21776/ub.jpacr.2020.009.01.517
Gopi, C. V. M., & Ramesh, R. (2024). Review of battery-supercapacitor hybrid energy storage systems for electric vehicles. In Results in Engineering (Vol. 24). Elsevier B.V. https://doi.org/10.1016/j.rineng.2024.103598
Guy, J. B., Porcher, W., Chazelle, S., Bossard, F., Mayousse, E., Chavillon, B., & Martinet, S. (2025). Influence of liquid electrolyte salt nature and concentration on tortuosity measurement of battery electrode. Electrochimica Acta, 514. https://doi.org/10.1016/j.electacta.2024.145567
Huang, H., Liu, P., Ma, Q., Tang, Z., Wang, M., & Hu, J. (2022). Enabling a high-performance saltwater Al-air battery via ultrasonically driven electrolyte flow. Ultrasonics Sonochemistry, 88. https://doi.org/10.1016/j.ultsonch.2022.106104
Jacobs, M., Gupta, R., & Paolone, M. (2024). Week-ahead dispatching of active distribution networks using hybrid energy storage systems. Sustainable Energy, Grids and Networks, 39. https://doi.org/10.1016/j.segan.2024.101500
Lippke, M., Ohnimus, T., Frankenberg, F., Schilde, C., & Kwade, A. (2024). Drying and calendering of Lithium Ion battery electrodes: A combined simulation approach. Powder Technology, 444. https://doi.org/10.1016/j.powtec.2024.119984
Liu, K., Ye, X., Zhang, A., Wang, X., Liang, T., Fang, Y., Zhang, W., Hu, K., Liu, X., & Chen, X. (2024). Highly efficient Fe-Cu dual-site nanoparticles supported on black pearls 2000 (carbon black) as oxygen reduction reaction catalysts for Al-air batteries. RSC Advances, 14(8), 5184–5192. https://doi.org/10.1039/d3ra07925b
Pavlovic, J., Tansini, A., Suarez, J., & Fontaras, G. (2024). Influence of vehicle and battery ageing and driving modes on emissions and efficiency in Plug-in hybrid vehicles. Energy Conversion and Management: X, 24. https://doi.org/10.1016/j.ecmx.2024.100776
Singh, R., Choudhary, A., & Arora, N. (2024). Manufacturing Letters Employing the electrode of different diameters to join dissimilar Al-Cu thin sheets using resistance spot welding. In Manufacturing Letters (Vol. 41). www.sciencedirect.com
Waseem, M., Lakshmi, G. S., Ahmad, M., & Suhaib, M. (2025). Energy storage technology and its impact in electric vehicle: Current progress and future outlook. Next Energy, 6, 100202. https://doi.org/10.1016/j.nxener.2024.100202
Yang, J., Cai, Y., & Mi, C. (2022). Lithium-ion battery capacity estimation based on battery surface temperature change under constant-current charge scenario. Energy, 241. https://doi.org/10.1016/j.energy.2021.122879
Zhang, P., Zheng, Y., Wang, H., Wu, J. M., Zhang, Z., & Wen, W. (2024). A battery-supercapacitor hybrid energy storage device that directly uses seawater or saltwater lake water. Materials Today Advances, 24. https://doi.org/10.1016/j.mtadv.2024.100535
DOI: https://doi.org/10.33394/hjkk.v13i2.14591
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.