Review of Secondary Metabolites From Melandean Bark Extract (Bridellia Micrantha): Bioactive Potential and Applications in Health

Faizul Bayani, Muhali Muhali, Devi Yuliana, Hulyadi Hulyadi, Gargazi Gargazi

Abstract


Abstract

The emergence of various diseases affecting the immune system, such as COVID-19 and Hand, Foot, and Mouth Disease, demands serious attention. Current climate changes occurring in almost all parts of the world can lead to the emergence of various viruses and bacteria that cause multiple diseases. Exploring medicinal plants that can enhance the immune system is crucial to be continued. This study aims to identify secondary metabolite compounds contained in Bridellia Micrantha plants using chemical reagents and gas chromatography-mass spectrometry (GC-MS) instruments. This research is an experimental laboratory study. The variable studied is the content of secondary metabolite compounds. Data were collected using chemical reagents and instruments. The obtained data are described in informative tables and graphs. Based on the identification results using instruments, positive results were found for organic compound groups such as flavonoids, alkaloids, and tannins. GC-MS test results showed that the organic compounds  contained in Bridellia Micrantha extract are 43.05% hexadecanoic acid, 21.46% oleic acid, 16% docos-13-enoic acid, 3.89% octadecanal, 1.85% propanediol, and 0.91% trans-phytol. Literature reviews indicate that the organic acids in Bridellia micrantha extract have clinical activities as antioxidants and anti-inflammatory agents, while organic compounds containing hydroxyl groups have clinical activities as anti-cancer agents. Based on these findings, Bridellia micrantha extract has the potential as a medicine that can enhance the body's immunity.

 

 


Keywords


Secondary Metabolite Compounds, Bridellia Micrantha

Full Text:

PDF

References


Adika, O. A., Madubunyi, I. I., & Asuzu, I. U. (2012). Antidiabetic and antioxidant effects of the methanol extract of Bridelia micrantha (Hochst) Baill. (Euphorbiaceae) leaves on alloxan-induced diabetic albino mice. Comparative Clinical Pathology, 21(5), 945–951. https://doi.org/10.1007/s00580-011-1205-8

Agie novilda, C., Tutik, T., & Marcellia, S. (2022). ANALISIS SENYAWA METABOLIT SEKUNDER MENGUNAKAN GC-MS EKSTRAK METANOL KULIT BAWANG MERAH (Allium cepa L.) DENGAN METODE REFLUKS DAN PERKOLASI. Jurnal Sains Dan Teknologi Farmasi Indonesia, 11(2), 100. https://doi.org/10.58327/jstfi.v11i2.199

Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613

Apt. Belinda Arbitya Dewi, M. F., M.Farm, T. S. W. S. F., & Apt. Nurul Nurhayati, S., M. F. (2022). FITOKIMIA.

Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Chapter 8 - Environmental Stress and Secondary Metabolites in Plants: An Overview. In P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam, & M. N. Alyemeni (Eds.), Plant Metabolites and Regulation Under Environmental Stress (pp. 153–167). Academic Press. https://doi.org/10.1016/B978-0-12-812689-9.00008-X

Asumang, P., Boakye, Y. D., Agana, T. A., Yakubu, J., Entsie, P., Akanwariwiak, W. G., Adu, F., & Agyare, C. (2021). Antimicrobial, antioxidant and wound healing activities of methanol leaf extract of Bridelia micrantha (Hochst.) Baill. Scientific African, 14, e00980. https://doi.org/10.1016/j.sciaf.2021.e00980

Balasaheb Nimse, S., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/C4RA13315C

Banu, K. S., & Dr.L.Cathrine. (2015). General Techniques Involved in Phytochemical Analysis. International Journal of Advanced Research in Chemical Science, 2(4), 25–32.

Bayani, F., Kurniasari, B. A., Hamdani, A. S., Yuliana, D., Wahyuni, I., & Mujaddid, J. (2023). Identification of Secondary Metabolite Compounds from Melandean (Bridelian micrantha) Leaf Extract. Hydrogen: Jurnal Kependidikan Kimia, 11(6), 858–873. https://doi.org/10.33394/hjkk.v11i6.9879

Bharath, B., Perinbam, K., Devanesan, S., AlSalhi, M. S., & Saravanan, M. (2021). Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. Journal of Molecular Structure, 1235, 130229. https://doi.org/10.1016/j.molstruc.2021.130229

Cardarelli, M., Rouphael, Y., Pellizzoni, M., Colla, G., & Lucini, L. (2017). Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Industrial Crops and Products, 108, 44–51. https://doi.org/10.1016/j.indcrop.2017.06.017

Carrillo Pérez, C., Cavia Camarero, M. del M., & Alonso de la Torre, S. (2012). Role of oleic acid in immune system; mechanism of action; a review. https://doi.org/10.3305/nh.2012.27.4.5783

Charlet, R., Le Danvic, C., Sendid, B., Nagnan-Le Meillour, P., & Jawhara, S. (2022). Oleic Acid and Palmitic Acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii Exhibit Anti-Inflammatory and Antifungal Properties. Microorganisms, 10(9), Article 9. https://doi.org/10.3390/microorganisms10091803

Egbuna, C., Ifemeje, J. C., Maduako, M. C., Tijjani, H., Udedi, S. C., Nwaka, A. C., & Ifemeje, M. O. (2018). Phytochemical Test Methods: Qualitative, Quantitative and Proximate Analysis. In Phytochemistry. Apple Academic Press.

Gaafar, A. A., Ali, S. I., El-Shawadfy, M. A., Salama, Z. A., Sękara, A., Ulrichs, C., & Abdelhamid, M. T. (2020). Ascorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditions. Plants, 9(5), Article 5. https://doi.org/10.3390/plants9050627

Ganesan, T., Subban, M., Christopher Leslee, D. B., Kuppannan, S. B., & Seedevi, P. (2022). Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03576-w

Gęgotek, A., & Skrzydlewska, E. (2022). Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants, 11(10), Article 10. https://doi.org/10.3390/antiox11101993

Guerriero, G., Berni, R., Muñoz-Sanchez, J. A., Apone, F., Abdel-Salam, E. M., Qahtan, A. A., Alatar, A. A., Cantini, C., Cai, G., Hausman, J.-F., Siddiqui, K. S., Hernández-Sotomayor, S. M. T., & Faisal, M. (2018). Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes, 9(6), Article 6. https://doi.org/10.3390/genes9060309

Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3

Hashim, N., Shaari, A. R., Mamat, A. S., & Ahmad, S. (2016). Effect of Differences Methanol Concentration and Extraction Time on the Antioxidant Capacity, Phenolics Content and Bioactive Constituents of Orthosiphon Stamineus Extracts. MATEC Web of Conferences, 78, 01004. https://doi.org/10.1051/matecconf/20167801004

Herschlag, D., & Pinney, M. M. (2018). Hydrogen Bonds: Simple after All? Biochemistry, 57(24), 3338–3352. https://doi.org/10.1021/acs.biochem.8b00217

Huang, W., Wang, Y., Tian, W., Cui, X., Tu, P., Li, J., Shi, S., & Liu, X. (2022). Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics, 11(10), Article 10. https://doi.org/10.3390/antibiotics11101380

Irfan, A., Imran, M., Khalid, M., Sami Ullah, M., Khalid, N., Assiri, M. A., Thomas, R., Muthu, S., Raza Basra, M. A., Hussein, M., Al-Sehemi, A. G., & Shahzad, M. (2021). Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. Journal of Saudi Chemical Society, 25(8), 101277. https://doi.org/10.1016/j.jscs.2021.101277

Kandar, C. C. (2022). Chapter 14—Herbal flavonoids in healthcare. In S. C. Mandal, A. K. Nayak, & A. K. Dhara (Eds.), Herbal Biomolecules in Healthcare Applications (pp. 295–311). Academic Press. https://doi.org/10.1016/B978-0-323-85852-6.00019-6

Kevin, T. D. A., Cedric, Y., Nadia, N. A. C., Sidiki, N. N. A., Azizi, M. A., Guy-Armand, G. N., Sandra, T. N. J., Christian, M. N., Géraldine, E. S. E., Roméo, T.-T., Payne, V. K., & Gustave, L. L. (2023). Antiplasmodial, Antioxidant, and Cytotoxic Activity of Bridelia micrantha a Cameroonian Medicinal Plant Used for the Treatment of Malaria. BioMed Research International, 2023, e1219432. https://doi.org/10.1155/2023/1219432

Khare, S., Singh, N. B., Singh, A., Hussain, I., Niharika, K., Yadav, V., Bano, C., Yadav, R. K., & Amist, N. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63(3), 203–216. https://doi.org/10.1007/s12374-020-09245-7

Korczowska-Łącka, I., Słowikowski, B., Piekut, T., Hurła, M., Banaszek, N., Szymanowicz, O., Jagodziński, P. P., Kozubski, W., Permoda-Pachuta, A., & Dorszewska, J. (2023). Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants, 12(10), Article 10. https://doi.org/10.3390/antiox12101811

Kumar, M., Prakash, S., Radha, Kumari, N., Pundir, A., Punia, S., Saurabh, V., Choudhary, P., Changan, S., Dhumal, S., Pradhan, P. C., Alajil, O., Singh, S., Sharma, N., Ilakiya, T., Singh, S., & Mekhemar, M. (2021). Beneficial Role of Antioxidant Secondary Metabolites from Medicinal Plants in Maintaining Oral Health. Antioxidants, 10(7), Article 7. https://doi.org/10.3390/antiox10071061

Leicach, S. R., & Chludil, H. D. (2014). Chapter 9 - Plant Secondary Metabolites: Structure–Activity Relationships in Human Health Prevention and Treatment of Common Diseases. In Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 42, pp. 267–304). Elsevier. https://doi.org/10.1016/B978-0-444-63281-4.00009-4

Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148, 80–89. https://doi.org/10.1016/j.plaphy.2020.01.006

Mandal, S. C., Nayak, A. K., & Dhara, A. K. (2021). Herbal Biomolecules in Healthcare Applications. Academic Press.

Mattosinhos, P. da S., Sarandy, M. M., Novaes, R. D., Esposito, D., & Gonçalves, R. V. (2022). Anti-Inflammatory, Antioxidant, and Skin Regenerative Potential of Secondary Metabolites from Plants of the Brassicaceae Family: A Systematic Review of In Vitro and In Vivo Preclinical Evidence (Biological Activities Brassicaceae Skin Diseases). Antioxidants, 11(7), Article 7. https://doi.org/10.3390/antiox11071346

Mborbe, N., Abdoulahi, M. I. I., Abel, M., Habibou, H. H., & Yaya, M. (2023). Phytochemical screening, phenolic determination and antibacterial activity of the extracts of Bridelia scleroneura Muell. Arg. (Euphorbiaceae) from Chad. Journal of Pharmacognosy and Phytochemistry, 12(2), 44–47. https://doi.org/10.22271/phyto.2023.v12.i2a.14629

Mburu, C., Kareru, P., Kipyegon, C., Madivoli, E., Maina, E., Kairigo, P., Kimani, P., & Marikah, D. (2016). Phytochemical Screening of Crude Extracts of Bridelia micrantha. European Journal of Medicinal Plants, 16(1), Article 1. https://doi.org/10.9734/EJMP/2016/26649

Michalak, M. (2022). Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. International Journal of Molecular Sciences, 23(2), Article 2. https://doi.org/10.3390/ijms23020585

Milugo, T. K., Omosa, L. K., Ochanda, J. O., Owuor, B. O., Wamunyokoli, F. A., Oyugi, J. O., & Ochieng, J. W. (2013). Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfia caffra sond.): Further evidence to support biotechnology in traditional medicinal plants. BMC Complementary and Alternative Medicine, 13(1), 285. https://doi.org/10.1186/1472-6882-13-285

Mondal, D. S., & Syed, T. R. (2020). Flavonoids: A vital resource in healthcare and medicine (Includes their effective action on COVID-19). Pharmacology & Pharmacy, 8, 91–104. https://doi.org/10.15406/ppij.2020.08.00285

Nortjie, E., Basitere, M., Moyo, D., & Nyamukamba, P. (2022). Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants, 11(15), Article 15. https://doi.org/10.3390/plants11152011

Okeleye, B. I., Bessong, P. O., & Ndip, R. N. (2011). Preliminary Phytochemical Screening and In Vitro Anti-Helicobacter pylori Activity of Extracts of the Stem Bark of Bridelia micrantha (Hochst., Baill., Euphorbiaceae). Molecules, 16(8), Article 8. https://doi.org/10.3390/molecules16086193

Olivoto, T., Nardino, M., Carvalho, I. R., Follmann, D. N., Szareski, V. J., Ferrari, M., Pelegrin, A. J. de, & Souza, V. Q. de. (2017). Plant secondary metabolites and its dynamical systems of induction in response to environmental factors: A review. African Journal of Agricultural Research, 12(2), 71–84. https://doi.org/10.5897/AJAR2016.11677

Omeh, Y. N., Onoja, S. O., Ezeja, M. I., & Okwor, P. O. (2014). Subacute antidiabetic and in vivo antioxidant effects of methanolic extract of Bridelia micrantha (Hochst Baill) leaf on alloxan-induced hyperglycaemic rats. Journal of Complementary and Integrative Medicine, 11(2), 99–105. https://doi.org/10.1515/jcim-2013-0067

Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacognosy and Phytochemistry, 2(5), 115–119.

Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodiversity, 18(11), e2100345. https://doi.org/10.1002/cbdv.202100345

Pimentel, G. C., & McClellan, A. L. (1971). Hydrogen Bonding. Annual Review of Physical Chemistry, 22(Volume 22,), 347–385. https://doi.org/10.1146/annurev.pc.22.100171.002023

Poiroux-Gonord, F., Bidel, L. P. R., Fanciullino, A.-L., Gautier, H., Lauri-Lopez, F., & Urban, L. (2010). Health Benefits of Vitamins and Secondary Metabolites of Fruits and Vegetables and Prospects To Increase Their Concentrations by Agronomic Approaches. Journal of Agricultural and Food Chemistry, 58(23), 12065–12082. https://doi.org/10.1021/jf1037745

Pravst, I. (2014). Oleic acid and its potential health effects (pp. 35–54).

Qaderi, M. M., Martel, A. B., & Strugnell, C. A. (2023). Environmental Factors Regulate Plant Secondary Metabolites. Plants, 12(3), Article 3. https://doi.org/10.3390/plants12030447

Safriana, S., Andilala, A., Fatimah, C., & Samrani, S. (2021). Profil Fitokimia Simplisia dan Ekstrak Etanol Daun Kedondong Pagar (Lannea coromandelica (Houtt.) Merr.) sebagai Tanaman Obat. Jurnal Ilmu Kefarmasian Indonesia, 19(2), 226. https://doi.org/10.35814/jifi.v19i2.936

Sales-Campos, H., Reis de Souza, P., Crema Peghini, B., Santana da Silva, J., & Ribeiro Cardoso, C. (2013). An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini Reviews in Medicinal Chemistry, 13(2), 201–210. https://doi.org/10.2174/138955713804805193

Santa-María, C., López-Enríquez, S., Montserrat-de la Paz, S., Geniz, I., Reyes-Quiroz, M. E., Moreno, M., Palomares, F., Sobrino, F., & Alba, G. (2023). Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients, 15(1), Article 1. https://doi.org/10.3390/nu15010224

Santamarina, A. B., Pisani, L. P., Baker, E. J., Marat, A. D., Valenzuela, C. A., Miles, E. A., & Calder, P. C. (2021). Anti-inflammatory effects of oleic acid and the anthocyanin keracyanin alone and in combination: Effects on monocyte and macrophage responses and the NF-κB pathway. Food & Function, 12(17), 7909–7922. https://doi.org/10.1039/D1FO01304A

Sen, S., & Chakraborty, R. (2011). The Role of Antioxidants in Human Health. In Oxidative Stress: Diagnostics, Prevention, and Therapy (Vol. 1083, pp. 1–37). American Chemical Society. https://doi.org/10.1021/bk-2011-1083.ch001

Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047

Shaikh, J., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. 8, 603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531

Sivanandham, V. (2015). PHYTOCHEMICAL TECHNIQUES - A REVIEW. World Journal of Science and Research, 1, 80–91.

Srivastava, A. K., Mishra, P., & Mishra, A. K. (2021). 3 - Effect of climate change on plant secondary metabolism: An ecological perspective. In A. K. Srivastava, V. K. Kannaujiya, R. K. Singh, & D. Singh (Eds.), Evolutionary Diversity as a Source for Anticancer Molecules (pp. 47–76). Academic Press. https://doi.org/10.1016/B978-0-12-821710-8.00003-5

Supruniuk, E., Górski, J., & Chabowski, A. (2023). Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants, 12(2), Article 2. https://doi.org/10.3390/antiox12020501

Tutunchi, H., Saghafi-Asl, M., & Ostadrahimi, A. (2020). A systematic review of the effects of oleoylethanolamide, a high-affinity endogenous ligand of PPAR-α, on the management and prevention of obesity. Clinical and Experimental Pharmacology and Physiology, 47(4), 543–552. https://doi.org/10.1111/1440-1681.13238

Wang, Z., Zhao, Z., Cheng, X., Liu, S., Wei, Q., & Scott, I. M. (2016). Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pesticide Biochemistry and Physiology, 127, 1–7. https://doi.org/10.1016/j.pestbp.2015.09.003

Yang, L., Wen, K.-S., Ruan, X., Zhao, Y.-X., Wei, F., & Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23(4), Article 4. https://doi.org/10.3390/molecules23040762

Yara-Varon, E., Selka, A., Fabiano-Tixier, A.-S., Balcells, M., Canela-Garayoa, R., Bily, A., Touaibia, M., & Chemat, F. (2016). Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n-hexane for the extraction of bioactive compounds. Green Chemistry, 18(24), 6596–6608. https://doi.org/10.1039/c6gc02191c

Yin, F. (2023). Lipid metabolism and Alzheimer’s disease: Clinical evidence, mechanistic link and therapeutic promise. The FEBS Journal, 290(6), 1420–1453. https://doi.org/10.1111/febs.16344

Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., & Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198–202. https://doi.org/10.1016/j.micpath.2018.08.034

Zhang, W., Chen, Z., Shen, Y., Li, G., Dai, Y., Qi, J., Ma, Y., Yang, S., & Wang, Y. (2020). Molecular Mechanism and Extraction Performance Evaluation for Separation of Methanol and n-Hexane via Ionic Liquids as Extractant. ACS Sustainable Chemistry & Engineering, 8(23), 8700–8712. https://doi.org/10.1021/acssuschemeng.0c02234




DOI: https://doi.org/10.33394/hjkk.v12i3.11956

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.