Sintesis Sensor Kolorimetri untuk Deteksi Sianida dengan reagen Besi (III) Klorida Menggunakan Metode Sol Gel dengan Kombinasi Smarthphone

Amalia Rohsaita, Muhammad Bakhru Thohir, Meilisa Rusdiana Surya Efendi, Windi Pangesti Kusumaning Tiyas, Marta Citra Nursaida

Abstract


Sensor untuk mendeteksi ion sianida (CN - ) telah berhasil dilakukan dengan metode sol-gel menggunakan prekursor tetraetil ortosilikat dan pereaksi FeCl3. Penelitian ini bertujuan untuk mengetahui kondisi optimal sintesis, kondisi optimal sensor, menentukan LoD dan LoQ. Sintesis dilakukan dengan mencampurkan prekursor dengan pelarut etanol. Selanjutnya ditambahkan H2O, Triton X-100, reagen dan katalis ke dalam campuran. Variasi yang dilakukan adalah konsentrasi reagen dan waktu penuaan terbaik. Hasil sensor dinyatakan dalam nilai Euclidean Distance (ED) titik Merah-Hijau-Biru (RGB) yang diperoleh. Kondisi optimal untuk penyensoran dilakukan dengan memvariasikan waktu kontak. Pada sintesis sol gel konsentrasi reagen terbaik diperoleh pada konsentrasi 0,1 M dan waktu penuaan terbaik adalah 4 hari. Penentuan kondisi sensor optimal terjadi pada waktu 30 detik dengan batas pencucian 120 detik. Validasi metode sensor menghasilkan linearitas pada rentang konsentrasi 100 – 1000 ppm dengan nilai R 2 sebesar 0,9984. LoD dan LoQ masing-masing sebesar 65,45 ppm dan 218,16 ppm. Karakterisasi sensor menggunakan spektrofotometer FTIR dari bilangan gelombang 4000 sampai 400 cm-1. Spektrum IR yang dihasilkan menunjukkan keberhasilan dalam sintesis sol-gel, karena pada penelitian ini SiO2 muncul pada bilangan gelombang sekitar 433 cm-1. Setelah tahap sensor dengan merendam sensor pada analisa CN - 0,01 M dan CN - 0,1 M tidak ada tanda-tanda munculnya gugus Fe-S pada bilangan gelombang 4000-400 cm-1, karena daerah serapannya berada pada 380- 311 cm -1.


Keywords


Colorimetric Sensor, Euqlidean Distance, RGB, cyanide ion .

Full Text:

PDF

References


Alonso-González, O., Jiménez-Velasco, C., Nava-Alonso, F., Alvarado-Hernández, F., & González-Anaya, J. A. (2017). Free cyanide analysis by silver nitrate titration with sulfide ion as interference. Minerals Engineering, 105, 19–21. https://doi.org/10.1016/j.mineng.2017.01.001

Angraini, F., & Falahudin, I. (2021). Uji Kadar Sianida pada Sampel Air Permukaan Sungai secara Spektrofotometer. Prosiding Seminar Nasional Sains Dan Teknologi Terapan, 4(1), 83–89.

Avnir, D., Levy, D., & Reisfeld, R. (1984). The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G. Journal of Physical Chemistry, 88(24), 5956–5959. https://doi.org/10.1021/j150668a042

Böhm, F., Sharma, V., Schwaab, G., & Havenith, M. (2015). The low frequency modes of solvated ions and ion pairs in aqueous electrolyte solutions: iron(ii) and iron(iii) chloride. Physical Chemistry Chemical Physics, 17(29), 19582–19591. https://doi.org/10.1039/c5cp03157e

Chu, C. S., & Chuang, C. Y. (2015). Optical fiber sensor for dual sensing of dissolved oxygen and Cu2+ ions based on PdTFPP/CdSe embedded in sol-gel matrix. Sensors and Actuators, B: Chemical, 209, 94–99. https://doi.org/10.1016/j.snb.2014.11.084

de Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharmaceutical Journal, 27(1), 1–8. https://doi.org/10.1016/j.jsps.2018.07.011

Effriandi, A. R., Siti, Z., & Prianda, B. E. (2019). Studi stabilitas warna biodiesel dan campuran biodiesel - minyak solar (B20) selama penyimpanan. Jurnal Teknik Kimia, 25(3), 60–69. https://doi.org/10.36706/jtk.v25i3.131

Feng, L., Zhang, Y., Wen, L., Shen, Z., & Guan, Y. (2011). Colorimetric determination of copper(II) ions by filtration on sol-gel membrane doped with diphenylcarbazide. Talanta, 84(3), 913–917. https://doi.org/10.1016/j.talanta.2011.02.033

Gilchrist, A., & Nobbs, J. (2019). Colorimetry , Theory. January 2000.

Guo, Y., Zhao, H., Han, Y., Liu, X., Guan, S., Zhang, Q., & Bian, X. (2017). Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 173, 532–536. https://doi.org/10.1016/j.saa.2016.10.003

Hua, S., Ma, H., Li, X., Yang, H., & Wang, A. (2010). pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. International Journal of Biological Macromolecules, 46(5), 517–523. https://doi.org/10.1016/j.ijbiomac.2010.03.004

Leonard, J., Koydemir, H. C., Koutnik, V. S., Tseng, D., Ozcan, A., & Mohanty, S. K. (2022). Smartphone-enabled rapid quantification of microplastics. Journal of Hazardous Materials Letters, 3(November 2021), 100052. https://doi.org/10.1016/j.hazl.2022.100052

Lin, Q., Liu, X., Wei, T. B., & Zhang, Y. M. (2013). Reaction-based ratiometric chemosensor for instant detection of cyanide in water with high selectivity and sensitivity. Chemistry - An Asian Journal, 8(12), 3015–3021. https://doi.org/10.1002/asia.201300791

Mizuguchi, H., Zhang, V. F., Onodera, H., Nishizawa, S., & Shida, J. (2008). On-site determination of trace nickel in liquid samples for semiconductor manufacturing by highly sensitive solid-phase colorimetry with α-furil dioxime. Chemistry Letters, 37(7), 792–793. https://doi.org/10.1246/cl.2008.792

Permana, R. D., Sunarto, S., Harahap, S. A., Riyantini, I., & Ilham, Y. (2021). Potassium Cyanide (KCN) Content in Coral Reefs and Its Effect on The Abundance of Indicator-Fishes in The Anambas Islands. Journal of Science and Applicative Technology, 5(1), 214. https://doi.org/10.35472/jsat.v5i1.381

Pratama, B., Setiyo, W. D., & Gunawan. (2012). Jurnal Kimia Sains dan Aplikasi Pengaruh pH pada Penurunan Kadar Ion Sianida secara. 15(51), 84–87.

Samadi-Maybodi, A., Rezaei, V., & Rastegarzadeh, S. (2015). Sol-gel based optical sensor for determination of Fe (II): A novel probe for iron speciation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 136(PB), 832–837. https://doi.org/10.1016/j.saa.2014.09.101

Shahamirifard, S. A., Ghaedi, M., & Hajati, S. (2018). A new silver (I) ions optical sensor based on nanoporous thin films of sol–gel by rose bengal dye. Sensors and Actuators, B: Chemical, 259, 20–29. https://doi.org/10.1016/j.snb.2017.12.030

Sidjabat, O. (2008). Pengembangan Teknologi Bersih Dan Kimia Hijau. Lembaran Publikasi Lemigas, 1, 45–50. https://journal.lemigas.esdm.go.id/index.php/LPMGB/article/view/201/92

Simatupang, L., & Devi. (2016). The preparation and characterization of Sinabung volcanic ash as silica based adsorbent. Jurnal Pendidikan Kimia, 8(3), 9–13. https://doi.org/10.24114/jpkim.v8i3.4478

Stanley, R., & Nesaraj, a S. (2014). Effect of Surfactants on the Wet Chemical Synthesis of Silica Nanoparticles. October 2013, 9–21.

Suharman, S., & Rahayu, S. U. (2020). Senyawa Hidrazone dari Vanilin-DNPH Sebagai Sensor Kolorimetri Anion Sianida. ALCHEMY Jurnal Penelitian Kimia, 16(1), 77. https://doi.org/10.20961/alchemy.16.1.34635.77-93

Tang, Y., Tehan, E. C., Tao, Z., & Bright, F. V. (2003). Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability. Analytical Chemistry, 75(10), 2407–2413. https://doi.org/10.1021/ac030087h

Triviana, L., Sugiarti, S., & Rohaeti, E. (2015). Sintesis Dan Karakterisasi Natrium Silikat ( Na2SiO3 ) Dari Sekam Padi Sintesis Dan Karakterisasi Natrium Silikat ( Na 2 SiO 3 ) Dari Sekam Padi Abstrak. 7(November 2017), 90–97.

Wulandari, R., Hamdiani, S., & Ismillayli, N. (2019). Synthesis Of Mesoporiic Silica From Rice Husk Ash For Pinostrobin Based Drug Delivery. Acta Chimica Asiana, 2(1), 75–82. https://doi.org/10.29303/aca.v2i1.20

Zhu, T., Li, Z., Fu, C., Chen, L., Chen, X., Gao, C., Zhang, S., & Liu, C. (2020). Development of an anthraquinone-based cyanide colorimetric sensor with activated C–H group: Large absorption red shift and application in food and water samples. Tetrahedron, 76(38), 131479. https://doi.org/10.1016/j.tet.2020.131479




DOI: https://doi.org/10.33394/hjkk.v12i3.11887

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.