Separation of Kaolinite from Clay Minerals and Its Catalytic Activity in Transesterification Reactions
Abstract
Keywords
Full Text:
PDFReferences
Admi, A., Ramadhani, F., & Syukri, S. (2020). Sintesis dan Karakterisasi Enkapsulat Katalis Nikel (II) pada Silika Mesopori Modifikasi. Jurnal Riset Kimia, 11(2), 89–96. https://doi.org/10.25077/jrk.v11i2.356
Ahmadi, A., Suyanti, I., Tikrahsari, S. A., & Aini, M. (2019). Pengaruh Waktu Adsorpsi Minyak Jelantah Sebagai Bahan Pembuatan Biodiesel Dengan Tanah Liat Terhadap Kualitas Biodiesel. Hydrogen: Jurnal Kependidikan Kimia, 6(2), 124. https://doi.org/10.33394/hjkk.v6i2.1606
Amirthavalli, V., Warrier, A. R., & Gurunathan, B. (2022). Chapter 6 - Various methods of biodiesel production and types of catalysts (B. Gurunathan, R. Sahadevan, & Z. A. B. T.-B. and B. Zakaria (eds.); pp. 111–132). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-85269-2.00020-4
Andrade, G. R. P., Azevedo, A. C. de, Lepchak, J. K., & Assis, T. C. (2019). Weathering of Permian sedimentary rocks and soil clay minerals transformations under subtropical climate, southern Brazil (Paraná State). Geoderma, 336(August 2018), 31–48. https://doi.org/10.1016/j.geoderma.2018.08.026
Anwar, M., Rasul, M. G., & Ashwath, N. (2018). Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Conversion and Management, 156(October 2017), 103–112. https://doi.org/10.1016/j.enconman.2017.11.004
Astam, A., Nurliana, L., & Kadidae, L. O. (2020). Sintesis Metil Ester Nitrat dari Minyak Biji Nyamplung (Calophyllum inophyllum L). Hydrogen: Jurnal Kependidikan Kimia, 7(2), 82. https://doi.org/10.33394/hjkk.v7i2.1927
Chen, X., & Peng, Y. (2018). Managing clay minerals in froth flotation—A critical review. Mineral Processing and Extractive Metallurgy Review, 39(5), 289–307. https://doi.org/10.1080/08827508.2018.1433175
Cheng, H., Zhou, Y., & Liu, Q. (2019). Kaolinite nanomaterials: Preparation, properties and functional applications. In Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814533-3.00006-5
Du, Y., Brumaud, C., Winnefeld, F., Lai, Y. H., & Habert, G. (2021). Mechanisms for efficient clay dispersing effect with tannins and sodium hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630. https://doi.org/10.1016/j.colsurfa.2021.127589
Gbarakoro, S. ., Konne, J. ., & Ofodile, S. (2018). Synthesis and Evaluation of Biodiesel Using Calcined and Acid Modified Kono-Boue (Kb) Clays as Catalyst. International Journal of Chemistry and Chemical Processes, 4(1), 2545.
Ghosh, N., & Halder, G. (2022). Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel production from edible and inedible feedstock: A review. Energy Conversion and Management, 270, 116292. https://doi.org/https://doi.org/10.1016/j.enconman.2022.116292
Hosseinzadeh-Bandbafha, H., Nizami, A. S., Kalogirou, S. A., Gupta, V. K., Park, Y. K., Fallahi, A., Sulaiman, A., Ranjbari, M., Rahnama, H., Aghbashlo, M., Peng, W., & Tabatabaei, M. (2022). Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renewable and Sustainable Energy Reviews, 161(April), 112411. https://doi.org/10.1016/j.rser.2022.112411
Johnston, C. J., Pepper, R. A., Martens, W. N., & Couperthwaite, S. (2022). Relationship between thermal dehydroxylation and aluminium extraction from a low-grade kaolinite: Role of clay chemistry and crystallinity. Hydrometallurgy, 214, 105967. https://doi.org/https://doi.org/10.1016/j.hydromet.2022.105967
Kassa, A. E., Shibeshi, N. T., & Tizazu, B. Z. (2022). Characterization and Optimization of Calcination Process Parameters for Extraction of Aluminum from Ethiopian Kaolinite. International Journal of Chemical Engineering, 2022. https://doi.org/10.1155/2022/5072635
Lagaly, G., Ogawa, M., & Dékány, I. (2013). Clay mineral-organic interactions. In Developments in Clay Science (Vol. 5). https://doi.org/10.1016/B978-0-08-098258-8.00015-8
Mohadesi, M., Aghel, B., Gouran, A., & Razmehgir, M. H. (2022). Transesterification of waste cooking oil using Clay/CaO as a solid base catalyst. Energy, 242, 122536. https://doi.org/10.1016/j.energy.2021.122536
Msinjili, N. S., Gluth, G. J. G., Sturm, P., Vogler, N., & Kühne, H. C. (2019). Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials. Materials and Structures/Materiaux et Constructions, 52(5). https://doi.org/10.1617/s11527-019-1393-2
Negara, I. M. S., & Simpen, I. N. (2016). Pemisahan Mineral Kaolin Dari Tanah Lempung Lokal Bali Secara Fraksinasi Ukuran Partikel. Prosiding Seminar Nasional Saintech, 98–105.
Nufida, B. A., Kurnia, N., & Kurniasih, Y. (2014). Pengaruh Ukuran Serbuk Pada Aktivasi Tanah Liat Dari Tanak Awu Terhadap Daya Adsorpsinya Pada Pemurnian Minyak Goreng Bekas. Hydrogen: Jurnal Kependidikan Kimia, 2(2), 216. https://doi.org/10.33394/hjkk.v2i2.660
Osorio-González, C. S., Gómez-Falcon, N., Sandoval-Salas, F., Saini, R., Brar, S. K., & Ramírez, A. A. (2020). Production of biodiesel from castor oil: A review. Energies, 13(10), 1–22. https://doi.org/10.3390/en13102467
Pleşa Chicinaş, R., Bedelean, H., Stefan, R., & Măicăneanu, A. (2018). Ability of a montmorillonitic clay to interact with cationic and anionic dyes in aqueous solutions. Journal of Molecular Structure, 1154, 187–195. https://doi.org/10.1016/j.molstruc.2017.10.038
Sihvonen, S. K., Murphy, K. A., Washton, N. M., Altaf, M. B., Mueller, K. T., & Freedman, M. A. (2018). Effect of Acid on Surface Hydroxyl Groups on Kaolinite and Montmorillonite. Zeitschrift Fur Physikalische Chemie, 232(3), 409–430. https://doi.org/10.1515/zpch-2016-0958
Silva-Valenzuela, M. das G., Chambi-Peralta, M. M., Sayeg, I. J., de Souza Carvalho, F. M., Wang, S. H., & Valenzuela-Díaz, F. R. (2018). Enrichment of clay from Vitoria da Conquista (Brazil) for applications in cosmetics. Applied Clay Science, 155(September 2017), 111–119. https://doi.org/10.1016/j.clay.2018.01.011
Singh, D., Sharma, D., Soni, S. L., Inda, C. S., Sharma, S., Sharma, P. K., & Jhalani, A. (2021). A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. Journal of Cleaner Production, 307, 127299. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127299
Syukri, S., Febiola, F., Rahmayeni, R., Efdi, M., Putri, Y. E., & Septiani, U. (2022). Effect of thermal treatment and nickel salt modification on the catalytic performance of the illite kaolinite clay from Bukittinggi of West Sumatra in palm oil transesterification. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2(101), 125–136.
Syukri, S., Septioga, K., Arief, S., Putri, Y. E., Efdi, M., & Septiani, U. (2020). Natural clay of pasaman barat enriched by cao of chicken eggshells as catalyst for biodiesel production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 662–673. https://doi.org/10.9767/BCREC.15.3.8097.662-673
Tsoutsos, T., Tournaki, S., Gkouskos, Z., Paraíba, O., Giglio, F., García, P. Q., Braga, J., Adrianos, H., & Filice, M. (2019). Quality characteristics of biodiesel produced from used cooking oil in Southern Europe. ChemEngineering, 3(1), 1–13. https://doi.org/10.3390/chemengineering3010019
Wang, Y., Muhammad, Y., Yu, S., Fu, T., Liu, K., Tong, Z., Hu, X., & Zhang, H. (2022). Preparation of Ca-and Na-Modified Activated Clay as a Promising Heterogeneous Catalyst for Biodiesel Production via Transesterification. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094667
Yanguatin, H., Ramírez, J. H., Tironi, A., & Tobón, J. I. (2019). Effect of thermal treatment on pozzolanic activity of excavated waste clays. Construction and Building Materials, 211, 814–823. https://doi.org/10.1016/j.conbuildmat.2019.03.300
Zhang, S., Liu, Q., Gao, F., & Teppen, B. J. (2018). Molecular Dynamics Simulation of Basal Spacing, Energetics, and Structure Evolution of a Kaolinite-Formamide Intercalation Complex and Their Interfacial Interaction. Journal of Physical Chemistry C, 122(6), 3341–3349. https://doi.org/10.1021/acs.jpcc.7b10234
Zheng, D., Liang, X., Cui, H., Tang, W., Liu, W., & Zhou, D. (2022). Study of performances and microstructures of mortar with calcined low-grade clay. Construction and Building Materials, 327(February), 126963. https://doi.org/10.1016/j.conbuildmat.2022.126963
Zhou, C. H., Zhao, L. Z., Wang, A. Q., Chen, T. H., & He, H. P. (2016). Current fundamental and applied research into clay minerals in China. Applied Clay Science, 119, 3–7. https://doi.org/10.1016/j.clay.2015.07.043
Živković, S., & Veljković, M. (2018). Environmental impacts the of production and use of biodiesel. Environmental Science and Pollution Research, 25(1), 191–199. https://doi.org/10.1007/s11356-017-0649-z
DOI: https://doi.org/10.33394/hjkk.v12i1.10600
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.