Separation of Kaolinite from Clay Minerals and Its Catalytic Activity in Transesterification Reactions

Rahayu Rahayu, Zarnida Widia Nengsih, Syukri Arief, Yetria Rilda, Matlal Fajri Alif, Syukri Syukri

Abstract


Kaolinite is a type of clay mineral that has the potential to be used as a heterogeneous catalyst in transesterification reactions. However, natural clay still contains a mixture of minerals that occur together. Therefore, as an effort to search for cheaper catalysts to reduce the price of biodiesel production, this study carried out the separation of kaolinite from natural clay and tested its performance as a catalyst in biodiesel production from Waste Cooking Oil (WCO). Separation of the kaolinite fraction was carried out with the help of NH4Cl as a dispersing agent. The main mineral composition of clay as quartz, kaolinite, montmorillonite and hematite. After the separation process, the crystallinity of the minerals experienced an increase marked by an increase in the intensity of several kaolinite peaks, namely in the 2θ 12.24° area from 103 to 108 and at 25.00° from 95 to 125. Thermal modification caused the loss of several kaolinite peaks in the area. 2θ 12.17°; 24.94° and 62.39°. The Si/Al ratio decreased after the fractionation and calcination processes. Average particle size of h-clay decreased from 27.61 µm to 21.09 µm in K-clay. The K-clay catalyst produced the highest conversion of palmitic acid at 42%, while c-K-clay produced the highest conversion of oleic acid and stearate at 30%. In addition, the density and water content of biodiesel catalyzed by K-clay and c-k-clay meet SNI standards. This finding has the potential to be further developed as a cost-effective catalyst based on natural resources in biodiesel production.

Keywords


clay; kaolinite; biodiesel; transesterification

Full Text:

PDF

References


Admi, A., Ramadhani, F., & Syukri, S. (2020). Sintesis dan Karakterisasi Enkapsulat Katalis Nikel (II) pada Silika Mesopori Modifikasi. Jurnal Riset Kimia, 11(2), 89–96. https://doi.org/10.25077/jrk.v11i2.356

Ahmadi, A., Suyanti, I., Tikrahsari, S. A., & Aini, M. (2019). Pengaruh Waktu Adsorpsi Minyak Jelantah Sebagai Bahan Pembuatan Biodiesel Dengan Tanah Liat Terhadap Kualitas Biodiesel. Hydrogen: Jurnal Kependidikan Kimia, 6(2), 124. https://doi.org/10.33394/hjkk.v6i2.1606

Amirthavalli, V., Warrier, A. R., & Gurunathan, B. (2022). Chapter 6 - Various methods of biodiesel production and types of catalysts (B. Gurunathan, R. Sahadevan, & Z. A. B. T.-B. and B. Zakaria (eds.); pp. 111–132). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-85269-2.00020-4

Andrade, G. R. P., Azevedo, A. C. de, Lepchak, J. K., & Assis, T. C. (2019). Weathering of Permian sedimentary rocks and soil clay minerals transformations under subtropical climate, southern Brazil (Paraná State). Geoderma, 336(August 2018), 31–48. https://doi.org/10.1016/j.geoderma.2018.08.026

Anwar, M., Rasul, M. G., & Ashwath, N. (2018). Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Conversion and Management, 156(October 2017), 103–112. https://doi.org/10.1016/j.enconman.2017.11.004

Astam, A., Nurliana, L., & Kadidae, L. O. (2020). Sintesis Metil Ester Nitrat dari Minyak Biji Nyamplung (Calophyllum inophyllum L). Hydrogen: Jurnal Kependidikan Kimia, 7(2), 82. https://doi.org/10.33394/hjkk.v7i2.1927

Chen, X., & Peng, Y. (2018). Managing clay minerals in froth flotation—A critical review. Mineral Processing and Extractive Metallurgy Review, 39(5), 289–307. https://doi.org/10.1080/08827508.2018.1433175

Cheng, H., Zhou, Y., & Liu, Q. (2019). Kaolinite nanomaterials: Preparation, properties and functional applications. In Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814533-3.00006-5

Du, Y., Brumaud, C., Winnefeld, F., Lai, Y. H., & Habert, G. (2021). Mechanisms for efficient clay dispersing effect with tannins and sodium hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630. https://doi.org/10.1016/j.colsurfa.2021.127589

Gbarakoro, S. ., Konne, J. ., & Ofodile, S. (2018). Synthesis and Evaluation of Biodiesel Using Calcined and Acid Modified Kono-Boue (Kb) Clays as Catalyst. International Journal of Chemistry and Chemical Processes, 4(1), 2545.

Ghosh, N., & Halder, G. (2022). Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel production from edible and inedible feedstock: A review. Energy Conversion and Management, 270, 116292. https://doi.org/https://doi.org/10.1016/j.enconman.2022.116292

Hosseinzadeh-Bandbafha, H., Nizami, A. S., Kalogirou, S. A., Gupta, V. K., Park, Y. K., Fallahi, A., Sulaiman, A., Ranjbari, M., Rahnama, H., Aghbashlo, M., Peng, W., & Tabatabaei, M. (2022). Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renewable and Sustainable Energy Reviews, 161(April), 112411. https://doi.org/10.1016/j.rser.2022.112411

Johnston, C. J., Pepper, R. A., Martens, W. N., & Couperthwaite, S. (2022). Relationship between thermal dehydroxylation and aluminium extraction from a low-grade kaolinite: Role of clay chemistry and crystallinity. Hydrometallurgy, 214, 105967. https://doi.org/https://doi.org/10.1016/j.hydromet.2022.105967

Kassa, A. E., Shibeshi, N. T., & Tizazu, B. Z. (2022). Characterization and Optimization of Calcination Process Parameters for Extraction of Aluminum from Ethiopian Kaolinite. International Journal of Chemical Engineering, 2022. https://doi.org/10.1155/2022/5072635

Lagaly, G., Ogawa, M., & Dékány, I. (2013). Clay mineral-organic interactions. In Developments in Clay Science (Vol. 5). https://doi.org/10.1016/B978-0-08-098258-8.00015-8

Mohadesi, M., Aghel, B., Gouran, A., & Razmehgir, M. H. (2022). Transesterification of waste cooking oil using Clay/CaO as a solid base catalyst. Energy, 242, 122536. https://doi.org/10.1016/j.energy.2021.122536

Msinjili, N. S., Gluth, G. J. G., Sturm, P., Vogler, N., & Kühne, H. C. (2019). Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials. Materials and Structures/Materiaux et Constructions, 52(5). https://doi.org/10.1617/s11527-019-1393-2

Negara, I. M. S., & Simpen, I. N. (2016). Pemisahan Mineral Kaolin Dari Tanah Lempung Lokal Bali Secara Fraksinasi Ukuran Partikel. Prosiding Seminar Nasional Saintech, 98–105.

Nufida, B. A., Kurnia, N., & Kurniasih, Y. (2014). Pengaruh Ukuran Serbuk Pada Aktivasi Tanah Liat Dari Tanak Awu Terhadap Daya Adsorpsinya Pada Pemurnian Minyak Goreng Bekas. Hydrogen: Jurnal Kependidikan Kimia, 2(2), 216. https://doi.org/10.33394/hjkk.v2i2.660

Osorio-González, C. S., Gómez-Falcon, N., Sandoval-Salas, F., Saini, R., Brar, S. K., & Ramírez, A. A. (2020). Production of biodiesel from castor oil: A review. Energies, 13(10), 1–22. https://doi.org/10.3390/en13102467

Pleşa Chicinaş, R., Bedelean, H., Stefan, R., & Măicăneanu, A. (2018). Ability of a montmorillonitic clay to interact with cationic and anionic dyes in aqueous solutions. Journal of Molecular Structure, 1154, 187–195. https://doi.org/10.1016/j.molstruc.2017.10.038

Sihvonen, S. K., Murphy, K. A., Washton, N. M., Altaf, M. B., Mueller, K. T., & Freedman, M. A. (2018). Effect of Acid on Surface Hydroxyl Groups on Kaolinite and Montmorillonite. Zeitschrift Fur Physikalische Chemie, 232(3), 409–430. https://doi.org/10.1515/zpch-2016-0958

Silva-Valenzuela, M. das G., Chambi-Peralta, M. M., Sayeg, I. J., de Souza Carvalho, F. M., Wang, S. H., & Valenzuela-Díaz, F. R. (2018). Enrichment of clay from Vitoria da Conquista (Brazil) for applications in cosmetics. Applied Clay Science, 155(September 2017), 111–119. https://doi.org/10.1016/j.clay.2018.01.011

Singh, D., Sharma, D., Soni, S. L., Inda, C. S., Sharma, S., Sharma, P. K., & Jhalani, A. (2021). A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. Journal of Cleaner Production, 307, 127299. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127299

Syukri, S., Febiola, F., Rahmayeni, R., Efdi, M., Putri, Y. E., & Septiani, U. (2022). Effect of thermal treatment and nickel salt modification on the catalytic performance of the illite kaolinite clay from Bukittinggi of West Sumatra in palm oil transesterification. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2(101), 125–136.

Syukri, S., Septioga, K., Arief, S., Putri, Y. E., Efdi, M., & Septiani, U. (2020). Natural clay of pasaman barat enriched by cao of chicken eggshells as catalyst for biodiesel production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 662–673. https://doi.org/10.9767/BCREC.15.3.8097.662-673

Tsoutsos, T., Tournaki, S., Gkouskos, Z., Paraíba, O., Giglio, F., García, P. Q., Braga, J., Adrianos, H., & Filice, M. (2019). Quality characteristics of biodiesel produced from used cooking oil in Southern Europe. ChemEngineering, 3(1), 1–13. https://doi.org/10.3390/chemengineering3010019

Wang, Y., Muhammad, Y., Yu, S., Fu, T., Liu, K., Tong, Z., Hu, X., & Zhang, H. (2022). Preparation of Ca-and Na-Modified Activated Clay as a Promising Heterogeneous Catalyst for Biodiesel Production via Transesterification. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094667

Yanguatin, H., Ramírez, J. H., Tironi, A., & Tobón, J. I. (2019). Effect of thermal treatment on pozzolanic activity of excavated waste clays. Construction and Building Materials, 211, 814–823. https://doi.org/10.1016/j.conbuildmat.2019.03.300

Zhang, S., Liu, Q., Gao, F., & Teppen, B. J. (2018). Molecular Dynamics Simulation of Basal Spacing, Energetics, and Structure Evolution of a Kaolinite-Formamide Intercalation Complex and Their Interfacial Interaction. Journal of Physical Chemistry C, 122(6), 3341–3349. https://doi.org/10.1021/acs.jpcc.7b10234

Zheng, D., Liang, X., Cui, H., Tang, W., Liu, W., & Zhou, D. (2022). Study of performances and microstructures of mortar with calcined low-grade clay. Construction and Building Materials, 327(February), 126963. https://doi.org/10.1016/j.conbuildmat.2022.126963

Zhou, C. H., Zhao, L. Z., Wang, A. Q., Chen, T. H., & He, H. P. (2016). Current fundamental and applied research into clay minerals in China. Applied Clay Science, 119, 3–7. https://doi.org/10.1016/j.clay.2015.07.043

Živković, S., & Veljković, M. (2018). Environmental impacts the of production and use of biodiesel. Environmental Science and Pollution Research, 25(1), 191–199. https://doi.org/10.1007/s11356-017-0649-z




DOI: https://doi.org/10.33394/hjkk.v12i1.10600

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.