Conducting Polymers for Wearable Sensors: A Bibliometric Analysis Using VOSviewer

Abraham Mora, Arrizal Abdul Aziz

Abstract


The objective of this study is to conduct a bibliometric analysis using VOSviewer on the research progress of the conducting polymer for wearable sensors topic. Data was extracted from the Dimensions database from 2014 to August 2023. 268 Dimensions articles were relevant to the keywords. The title and abstract from the metadata were employed to be analyzed for co-occurrence using VOSviewer. As a result, 9544 terms were obtained through the search method, but only 184 met the threshold of 10 minimum occurrences in all retrieved articles and were selected for further analysis. There was a consistent upward trend in publication numbers between 2014 to August 2023. Based on the network visualization of keyword co-occurrence, it evidenced six clusters that group all specific keywords based on the common themes. The most recent keywords (occurred between 2021 and 2022) included conductive hydrogel, polymer hydrogel, flexible sensor, MXene, strain sensor, and stretchable strain sensor. Based on this study, it is suggested to discover more about conducting and flexible hydrogel materials and the possibilities to enhance the electrical and mechanical properties of conducting polymers by introducing MXene. The materials are viewed for applications such as flexible strain sensors and other wearable sensors.


Keywords


conducting polymer, wearable sensors, hydrogel, MXene, stretchable strain sensor

Full Text:

PDF

References


Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials, 26(11), 1678–1698. https://doi.org/10.1002/adfm.201504755

An, J. E., & Kwon, O. S. (2021). Multidimensional Conducting Polymer Nanofiber Membrane Conjugated with Human Dopamine Receptor for Early Dopamine Detection. 한국진공학회 학술발표회초록집. https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE10548888

Baeg, K. J., Caironi, M., & Noh, Y. Y. (2013). Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Advanced Materials, 25(31), 4210–4244. https://doi.org/10.1002/adma.201205361

Cai, Y., Shen, J., Dai, Z., Zang, X., Dong, Q., Guan, G., Li, L. J., Huang, W., & Dong, X. (2017). Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors. Advanced Materials, 29(31), 1–9. https://doi.org/10.1002/adma.201606411

Cao, P., Feng, J., Yang, T., Ao, H., Shang, T., & Xing, B. (2023). MXene-enhanced deep eutectic solvent-based flexible strain sensor with high conductivity and anti-freezing using electrohydrodynamic direct-writing method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 677(PA), 132349. https://doi.org/10.1016/j.colsurfa.2023.132349

Chen, Y. W., Pancham, P. P., Mukherjee, A., Martincic, E., & Lo, C. Y. (2022). Recent advances in flexible force sensors and their applications: a review. Flexible and Printed Electronics, 7(3). https://doi.org/10.1088/2058-8585/ac8be1

Chu, X., Huang, H., Zhang, H., Zhang, H., Gu, B., Su, H., Liu, F., Han, Y., Wang, Z., Chen, N., Yan, C., Deng, W., Deng, W., & Yang, W. (2019). Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochimica Acta, 301, 136–144. https://doi.org/10.1016/j.electacta.2019.01.165

Diao, Y., Woon, R., Yang, H., Chow, A., Wang, H., (2021). Kirigami electrodes of conducting polymer nanofibers for wearable humidity dosimeters and stretchable supercapacitors. Journal of Materials Chemistry A, 9, 9849-9857 https://pubs.rsc.org/en/content/articlehtml/2021/ta/d0ta11335b

Fan, X., Xu, B., Wang, N., Wang, J., Liu, S., Wang, H., & Yan, F. (2017). Highly Conductive Stretchable All-Plastic Electrodes Using a Novel Dipping-Embedded Transfer Method for High-Performance Wearable Sensors and Semitransparent Organic Solar Cells. Advanced Electronic Materials, 3(5), 1–7. https://doi.org/10.1002/aelm.201600471

Gao, F., Teng, H., Song, J., Xu, G., & Luo, X. (2020). A flexible and highly sensitive nitrite sensor enabled by interconnected 3D porous polyaniline/carbon nanotube conductive hydrogels. Analytical Methods, 12(5), 604–610. https://doi.org/10.1039/C9AY02442E

Gong, S., Lai, D. T. H., Su, B., Si, K. J., Ma, Z., Yap, L. W., Guo, P., & Cheng, W. (2015). Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials, 1(4), 1–7. https://doi.org/10.1002/aelm.201400063

Guo, Y., Guo, Z., Zhong, M., Wan, P., Zhang, W., & Zhang, L. (2018). A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Full-Range Human–Machine Interfacing. Small, 14(44), 1–9. https://doi.org/10.1002/smll.201803018

Himadri Reddy, P. C., Amalraj, J., Ranganatha, S., Patil, S. S., & Chandrasekaran, S. (2023). A review on effect of conducting polymers on carbon-based electrode materials for electrochemical supercapacitors. Synthetic Metals, 298, 117447. https://doi.org/https://doi.org/10.1016/j.synthmet.2023.117447

Indriati, D., & Nandiyanto, A. B. D. (2023). Bibliometric Analysis of Hydrogels from Graphene Oxide Nanoparticles Using the VOSviewer Application. Fullerene Journal of Chemistry, 7(2), 90–100. https://doi.org/10.37033/fjc.v7i1.461

Jiang, S., Chen, Y., & Peng, Y. (2022). Ginkgo Leaf Inspired Fabrication of Micro/Nanostructures and Demonstration of Flexible Enzyme-Free Glucose Sensors. Sensors, 22(19), 1–10. https://doi.org/10.3390/s22197507

Khadtare, S., Ko, E. J., Kim, Y. H., Lee, H. S., & ... (2019). A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system. Sensors and Actuators A: Physical, 299, 111575. https://www.sciencedirect.com/science/article/pii/S0924424719304923

Kim, J., Lee, M., Shim, H. J., Ghaffari, R., Cho, H. R., Son, D., Jung, Y. H., Soh, M., Choi, C., Jung, S., Chu, K., Jeon, D., Lee, S. T., Kim, J. H., Choi, S. H., Hyeon, T., & Kim, D. H. (2014). Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Communications, 5. https://doi.org/10.1038/ncomms6747

Kozma, J., Papp, S., & Gyurcsányi, R. E. (2023). Highly hydrophobic TEMPO-functionalized conducting copolymers for solid-contact ion-selective electrodes. Bioelectrochemistry, 150(December 2022). https://doi.org/10.1016/j.bioelechem.2022.108352

Kumar, T., & Verma, A. (2024). Eco-Friendly Conducting Polymer-Based Functionalized Nanocomposites Dedicated for Electrochemical Devices BT - Functionalized Nanomaterials Based Supercapacitor: Design, Performance and Industrial Applications (C. M. Hussain & M. B. Ahamed (eds.); pp. 405–440). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3021-0_17

Kurniati, P. S., Saputra, H., & Fauzan, T. A. (2022). A Bibliometric Analysis of Chemistry Industry Research Using Vosviewer Application with Publish or Perish. Moroccan Journal of Chemistry, 10(3), 428–441. https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.33061

Li, Q., Chen, G., Cui, Y., Ji, S., Liu, Z., Wan, C., Liu, Y., Lu, Y., Wang, C., Zhang, N., Cheng, Y., Zhang, K.-Q., & Chen, X. (2021). Highly Thermal-Wet Comfortable and Conformal Silk-Based Electrodes for On-Skin Sensors with Sweat Tolerance. ACS Nano, 15(6), 9955–9966. https://doi.org/10.1021/acsnano.1c01431

Liu, H., Zhang, S., Li, Z., Lu, T. J., Lin, H., Zhu, Y., Ahadian, S., Emaminejad, S., Dokmeci, M. R., Xu, F., & Khademhosseini, A. (2021). Harnessing the wide-range strain sensitivity of bilayered PEDOT:PSS films for wearable health monitoring. Matter, 4(9), 2886–2901. https://doi.org/10.1016/j.matt.2021.06.034

Lo Presti, D., Massaroni, C., D’Abbraccio, J., Massari, L., Caponero, M., Longo, U. G., Formica, D., Oddo, C. M., & Schena, E. (2019). Wearable system based on flexible fbg for respiratory and cardiac monitoring. IEEE Sensors Journal, 19(17), 7391–7398. https://doi.org/10.1109/JSEN.2019.2916320

Mukhopadhyay, S. C. (2015). Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors Journal, 15(3), 1321–1330. https://doi.org/10.1109/JSEN.2014.2370945

Palmblad, M., van Eck, N. J., & Bergquist, J. (2023). Capillary electrophoresis - A bibliometric analysis. TrAC - Trends in Analytical Chemistry, 159, 116899. https://doi.org/10.1016/j.trac.2022.116899

R Ball. (2020). Handbook Bibliometrics. De Gruyter Saur.

Seesaard, T., & Wongchoosuk, C. (2023). Fabric-based piezoresistive Ti3AlC2/PEDOT:PSS force sensor for wearable E-textile applications. Organic Electronics, 122(June), 106894. https://doi.org/10.1016/j.orgel.2023.106894

Seyedin, S., Uzun, S., Levitt, A., Anasori, B., Dion, G., Gogotsi, Y., & Razal, J. M. (2020). MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials, 30(12), 1–11. https://doi.org/10.1002/adfm.201910504

Son, D., Kang, J., Vardoulis, O., Kim, Y., Matsuhisa, N., Oh, J. Y., To, J. W., Mun, J., Katsumata, T., Liu, Y., McGuire, A. F., Krason, M., Molina-Lopez, F., Ham, J., Kraft, U., Lee, Y., Yun, Y., Tok, J. B. H., & Bao, Z. (2018). An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology, 13(11), 1057–1065. https://doi.org/10.1038/s41565-018-0244-6

Sun, H., Bu, Y., Liu, H., Wang, J., Yang, W., Li, Q., Guo, Z., Liu, C., & Shen, C. (2022). Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor. Science Bulletin, 67(16), 1669–1678. https://doi.org/10.1016/j.scib.2022.07.020

Wang, B., & Facchetti, A. (2019). Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. Advanced Materials, 31(28), 1–53. https://doi.org/10.1002/adma.201901408

Wang, S., Oh, J. Y., Xu, J., Tran, H., & Bao, Z. (2018). Skin-Inspired Electronics: An Emerging Paradigm [Research-article]. Accounts of Chemical Research, 51(5), 1033–1045. https://doi.org/10.1021/acs.accounts.8b00015

Xu, H., Lv, Y., Qiu, D., Zhou, Y., Zeng, H., & Chu, Y. (2019). An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale, 11(4), 1570–1578. https://doi.org/10.1039/c8nr08589g

Zhang, W., Zhang, X., Zhao, W., & Wang, X. (2023). High-Sensitivity Composite Dual-Network Hydrogel Strain Sensor and Its Application in Intelligent Recognition and Motion Monitoring. ACS Applied Polymer Materials, 5(4), 2628–2638. https://doi.org/10.1021/acsapm.2c02215

Zhao, Y., Zhang, B., Yao, B., Qiu, Y., Peng, Z., Zhang, Y., Alsaid, Y., Frenkel, I., Youssef, K., Pei, Q., & He, X. (2020). Hierarchically Structured Stretchable Conductive Hydrogels for High-Performance Wearable Strain Sensors and Supercapacitors. Matter, 3(4), 1196–1210. https://doi.org/10.1016/j.matt.2020.08.024




DOI: https://doi.org/10.33394/hjkk.v12i1.10435

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.