Biosynthesis of Gold Nanoparticles Using Wuluh Star Fruit (Averrhoa bilimbi) for Chromium Analysis

Ria Kemala Dewi, M. Lutfi Firdaus, Euis Nursa'adah

Abstract


One of the heavy metals that can pollute waters is the heavy metal chromium (Cr). Chromium has many important roles in life. Chromium material is widely used by humans for various purposes, especially in the industrial world. However, the large number of uses of chromium in the industrial world and the waste it generates can have a negative impact on the environment and human health. One way to deal with chromium pollution is by analyzing the presence of chromium in waters. The aim of this research is to analyze the presence of chromium using a simple, effective, economical and accurate method, namely the biosynthesis of gold nanoparticles using samples of starfruit (Averrhoa bilimbi) as a bioreductor rich in ascorbic acid, with a colorimetric method, namely a method based on the aggregation of gold nanoparticles with ascorbic acid from starfruit, which causes a shift in plasmons and causes color changes that can be seen by the eye. Based on the analysis results, data was obtained that gold nanoparticles synthesized from the starfruit bioreductor can detect chromium with a concentration of 10 ppm with optimum conditions at pH 5, temperature 75oC, optimum incubation time of 5 minutes and gold nanoparticles are selective and sensitive for detecting chromium.


Keywords


Kromium, Nanopartikel Emas, Belimbing Wuluh, Kolorimetri

Full Text:

PDF

References


Abdullah, M., Yudistira, V., Nirmin., dan Khairurrijal. (2008). Review: Sintesis Nanomaterial. Jurnal Nanosains & Nanoteknologi. 2(1): 33-57.

Agustina, T., & Teknik, F. (2014). Kontaminasi Logam Berat Pada Makanan Dan Dampaknya Pada Kesehatan. Teknobuga, 1(1), 53–65.

Amiruddin, M. A., & Taufikurrohmah, T. (2013). Material Peredam Radikal Synthesis and Characterization of Gold Nanoparticle Using a Matrix of Bentonite in Scavenging Free Radicals in Cosmetics. UNESA Journal of Chemistry Vol. 2, No. 1, January 2013, 2(1), 68–75.

Amourizi, F., Dashtian, K., & Ghaedi, M. (2020). Polyvinylalcohol-citrate-stabilized gold nanoparticles supported congo red indicator as an optical sensor for selective colorimetric determination of Cr(III) ion. Polyhedron, 176(February 2022), 114278. https://doi.org/10.1016/j.poly.2019.114278

Azhar, F. F. (2019). Pemanfaatan Nanopartikel Perak Ekstrak Belimbing Wuluh Sebagai Indikator Kolorimetri Logam Merkuri. Jurnal Ipteks Terapan, 13(1), 34. https://doi.org/10.22216/jit.2019.v13i1.3614

Hitsmi, M., Firdaus, M. L., & Nurhamidah, N. (2019). Pengembangan Metode Citra Digital Berbasis Aplikasi Android Untuk Analisis Ion Logam Cr(VI). Alotrop, 2(2), 117–124. https://doi.org/10.33369/atp.v4i2.13835

Hua Lo, S., Chun Wu Ming, Venkatesan Parthiban dan Pao Wu Shu, (2015). Colorimetric Detection of Chromium(III) using O-phospo- L-serine dithiocarbamic acid Functionalized Gold Nanoparticles.Sensors and Actuators B: Chemical. 220 : 772-778

Kumar, B., & Cumbal, L. (2016). UV-Vis , FTIR and antioxidant study of Persea Americana ( Avocado ) leaf and fruit : A comparison UV-Vis , FTIR y estudio antioxidante de Persea Americana hoja y fruto ( Avocado ): Una comparaci ´ on. 13–20.

Li, S., Wei, T., Ren, G., Chai, F., Wu, H., & Qu, F. (2017). Gold nanoparticles based colorimetric probe for Cr(III) and Cr(VI) detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 535(Iii), 215–224. https://doi.org/10.1016/j.colsurfa.2017.09.028

Palar, H. 2008. Pencemaran dan Toksikologi Logam Berat. Jakarta: Rineka Cipta

Riyanto. 2014. Verifikasi dan Validasi. Yogyakarta: Deepublish.

Schiavon, M., Pilon‐Smits, E. A. H., Wirtz, M., Hell, R., & Malagoli, M. (2008). Interactions between Chromium and Sulfur Metabolism in Brassica juncea . Journal of Environmental Quality, 37(4), 1536–1545. https://doi.org/10.2134/jeq2007.0032

Suprapti, N. H. (2012). Kandungan Chromium pada Perairan, Sedimen dan Kerang Darah (Anadara granosa) di Wilayah Pantai Sekitar Muara Sungai Sayung Desa Morosari Kabupaten Demak, Jawa Tengah. Bioma : Berkala Ilmiah Biologi, 10(2), 36. https://doi.org/10.14710/bioma.10.2.36-40

Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(2), 257–262. https://doi.org/10.1016/j.nano.2009.07.002




DOI: https://doi.org/10.33394/hjkk.v12i1.10188

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.