Optical Properties of Polyvinyl Alcohol-Based Polymer Films Containing Methylene Blue and Trichloroacetic Acid for Gamma Radiation Dosimetry Applications

Saiful Prayogi, Aris Doyan, Namory Méité, Yusuf Sarkingobir, Alfred Niamien Kouamé, Ouattara Leygnima Yaya

Abstract


The primary objective of this study is to investigate the optical properties of polyvinyl alcohol (PVA) based polymer films, incorporating methylene blue (MB) dye and trichloroacetic acid (TCA), for their potential application in gamma radiation dosimetry. Specifically, this research aims to explore the effects of gamma radiation on the color change characteristics, optical absorption spectra, activation energy, and optical band gap energy of the PVA-MB-TCA polymer films. Additionally, the study seeks to assess the stability of these polymer films under varying doses of gamma radiation, ranging up to 14 kGy. The PVA-MB-TCA polymer films were prepared using a solvent-casting method. The polymer film samples were then exposed to gamma radiation from a 60Co source, with doses up to 14 kGy. The study observed significant color changes in the polymer films, transitioning from blue at 0 kGy to light blue-near transparent at 14 kGy. Spectrophotometric analysis identified three distinct wavelengths of maximum absorption at 360 nm, 440 nm, and 560 nm. As the radiation dose increased, absorption values decreased at 360 nm and 440 nm, while an opposite trend was noted at 560 nm. Furthermore, the activation energy of the polymer films was found to decrease with increasing radiation doses, indicating a reduction in the energy barriers for internal reactions. Similarly, the optical band gap energy also showed a decreasing trend with higher radiation doses across all types of transitions. These results demonstrate that the PVA-MB-TCA polymer films undergo significant optical and structural changes when exposed to gamma radiation, highlighting their potential utility as reliable high-dose radiation dosimeters. The stability of these films under radiation further supports their applicability in various fields requiring precise radiation dose monitoring, such as medical sterilization, food processing, and environmental safety.


Keywords


Optical properties; Polymer films; Gamma irradiation; Radiation dosimetry

References


Abdel-Fattah, A. A., El-Kelany, M., & Abdel-Rehim, F. (1996). Development of a radiation-sensitive indicator. Radiation Physics and Chemistry, 48(4), 497–503. https://doi.org/10.1016/0969-806X(96)00014-X

Abdel-Fattah, A. A., El-Kelany, M., Abdel-Rehim, F., & El Miligy, A. A. (1997). UV-sensitive indicators based on bromophenol blue and chloral hydrate dyed poly(vinyl butyral). Journal of Photochemistry and Photobiology A: Chemistry, 110(3), 291–297. https://doi.org/10.1016/S1010-6030(97)00195-0

Abdel-Fattah, A. A., Soliman, Y. S., Bayomi, A. M. M., & Abdel-Khalek, A. A. (2014). Dosimetric characteristics of a Radiochromic polyvinyl butyral film containing 2,4-hexadiyn-1,6-bis(n-butyl urethane). Applied Radiation and Isotopes, 86, 21–27. https://doi.org/10.1016/j.apradiso.2013.12.023

Akhtar, S., Hussain, T., Shahzad, A., & Qamar-ul-Islam. (2013). The Feasibility of Reactive Dye in PVA Films as High Dosimeter. Journal of Basic & Applied Sciences, 9, 420–423. https://doi.org/10.6000/1927-5129.2013.09.54

Akhtar, S., Shahzad, A., Bashir, S., Hussain, M. Y., & Akhtar, N. (2016). Improved performance of radiochromic films for high-dose dosimetry. Radioprotection, 51(2), 129–133. https://doi.org/10.1051/radiopro/2016001

Aldweri, F. M., Abuzayed, M. H., Al-Ajaleen, M. S., & Rabaeh, K. A. (2018). Characterization of Thymol blue Radiochromic dosimeters for high dose applications. Results in Physics, 8, 1001–1005. https://doi.org/10.1016/j.rinp.2018.01.050

Aldweri, F. M., Rabaeh, K. A., & Al-Ahmad, K. N. (2017). Novel radiochromic dosimeters based on Calcein dye for high dose applications. Radiation Physics and Chemistry, 139, 1–4. https://doi.org/10.1016/j.radphyschem.2017.05.007

Ali-Omer, M. A., & Ali-Bashir, E. A. (2018). Synthesis of polyvinyl alcohol and cuprous oxide (PVA/Cu 2 O) films for radiation detection and personal dosimeter based on optical properties. Journal of Radiation Research and Applied Sciences, 11(3), 237–241. https://doi.org/10.1016/j.jrras.2018.03.001

Ang, S. L., Sivashankari, R., Shaharuddin, B., Chuah, J.-A., Tsuge, T., Abe, H., & Sudesh, K. (2020). Potential Applications of Polyhydroxyalkanoates as a Biomaterial for the Aging Population. Polymer Degradation and Stability, 181, 109371. https://doi.org/10.1016/j.polymdegradstab.2020.109371

Aydarous, A., Badawi, A., & Abdallah, S. (2016). The effects of electrons and photons irradiation on the optical and thermophysical properties of Gafchromic HD-V2 films. Results in Physics, 6, 952–956. https://doi.org/10.1016/j.rinp.2016.11.025

Aziz, S. B., Brza, M. A., Nofal, M. M., Abdulwahid, R. T., Hussen, S. A., Hussein, A. M., & Karim, W. O. (2020). A Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites. Materials, 13(17), 3675. https://doi.org/10.3390/ma13173675

Basfar, A. A., Rabaeh, K. A., & Mousa, A. A. (2012). Improved performance of nitro-blue tetrazolium polyvinyl butyral high dose film dosimeters. Radiation Measurements, 47(10), 1005–1008. https://doi.org/10.1016/j.radmeas.2012.07.008

Chaturvedi, A., Bajpai, A. K., Bajpai, J., & Sharma, A. (2015). Antimicrobial poly(vinyl alcohol) cryogel–copper nanocomposites for possible applications in biomedical fields. Designed Monomers and Polymers, 18(4), 385–400. https://doi.org/10.1080/15685551.2015.1012628

Costa, J. C. S., Taveira, R. J. S., Lima, C. F. R. A. C., Mendes, A., & Santos, L. M. N. B. F. (2016). Optical band gaps of organic semiconductor materials. Optical Materials, 58, 51–60. https://doi.org/10.1016/j.optmat.2016.03.041

Dhara, B., Sappati, S., Singh, S. K., Kurungot, S., Ghosh, P., & Ballav, N. (2016). Coordination polymers of Fe( III ) and Al( III ) ions with TCA ligand: Distinctive fluorescence, CO 2 uptake, redox-activity and oxygen evolution reaction. Dalton Transactions, 45(16), 6901–6908. https://doi.org/10.1039/C6DT00009F

Doyan, A., Susilawati, S., Prayogi, S., Bilad, M. R., Arif, M. F., & Ismail, N. M. (2021). Polymer Film Blend of Polyvinyl Alcohol, Trichloroethylene and Cresol Red for Gamma Radiation Dosimetry. Polymers, 13(11), 1866. https://doi.org/10.3390/polym13111866

Ebraheem, S., Eid, S., & Kovacs, A. (2002). A new dyed poly (vinyl alcohol) film for high-dose applications. Radiation Physics and Chemistry, 63(3–6), 807–811. https://doi.org/10.1016/S0969-806X(01)00663-6

Ebraheem, S., & El-Kelany, M. (2013). Dosimeter Film Based on Ethyl Violet-Bromophenol Blue Dyed Poly(Vinyl Alcohol). Open Journal of Polymer Chemistry, 03(01), 1–5. https://doi.org/10.4236/ojpchem.2013.31001

El-Kelany, M., & Gafar, S. M. (2016). Preparation of radiation monitoring labels to γ ray. Optik, 127(16), 6746–6753. https://doi.org/10.1016/j.ijleo.2016.05.001

Emi-Reynolds, G., Kovacs, A., & Fletcher, J. J. (2007). Dosimetry characterization of tetrazolium violet-polyvinylalcohol films. Radiation Physics and Chemistry, 76(8–9), 1519–1522. https://doi.org/10.1016/j.radphyschem.2007.02.064

Escobedo-Morales, A., Ruiz-López, I. I., Ruiz-Peralta, M. deL., Tepech-Carrillo, L., Sánchez-Cantú, M., & Moreno-Orea, J. E. (2019). Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon, 5(4), e01505. https://doi.org/10.1016/j.heliyon.2019.e01505

Eskin, M., & Robinson, D. S. (2001). Food Shelf Life Stability: Chemical, Biochemical, and Microbiological Changes (1st ed.). CRC Press.

Gadhave, R. V., Mahanwar, P. A., & Gadekar, P. T. (2019). Effect of vinyl silane modification on thermal and mechanical properties of starch-polyvinyl alcohol blend. Designed Monomers and Polymers, 22(1), 159–163. https://doi.org/10.1080/15685551.2019.1678223

Gafar, S. M., & El-Ahdal, M. A. (2014). Dosimetric characteristics of 2,6 di-nitro phenol for high dose dosimetry. Dyes and Pigments, 109, 67–71. https://doi.org/10.1016/j.dyepig.2014.05.001

Gafar, S. M., El-Kelany, M. A., & El-Shawadfy, S. R. (2018). Spectrophotometric properties of azo dye metal complex and its possible use as radiation dosimeter. Journal of Radiation Research and Applied Sciences, 11(3), 190–194. https://doi.org/10.1016/j.jrras.2018.01.004

Gafar, S. M., El-Kelany, M., & El-Ahdal, M. (2017). Low-dose film dosimeter based on mixture of AY and TBPE dyed poly(vinyl alcohol). Dyes and Pigments, 140, 1–5. https://doi.org/10.1016/j.dyepig.2017.01.020

Galante, A. M. S., & Campos, L. L. (2012). Mapping radiation fields in containers for industrial γ-irradiation using polycarbonate dosimeters. Applied Radiation and Isotopes, 70(7), 1264–1266. https://doi.org/10.1016/j.apradiso.2011.12.046

Handayani, M., & Permawati, H. (2017). Gamma irradiation technology to preservation of foodstuffs as an effort to maintain quality and acquaint the significant role of nuclear on food production to Indonesia society: A Review. Energy Procedia, 127, 302–309. https://doi.org/10.1016/j.egypro.2017.08.112

Hassani, H., Nedaie, H. A., Zahmatkesh, M. H., & Shirani, K. (2014). A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films. Medical Dosimetry, 39(1), 102–107. https://doi.org/10.1016/j.meddos.2013.10.007

Horowitz, Y. S. (2001). Theory of thermoluminescence gamma dose response: The unified interaction model. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(1–2), 68–84. https://doi.org/10.1016/S0168-583X(01)00712-1

Horowitz, Y. S. (2014). Thermoluminescence dosimetry: State-of-the-art and frontiers of future research. Radiation Measurements, 71, 2–7. https://doi.org/10.1016/j.radmeas.2014.01.002

Hosni, F., Farah, K., Kaouach, H., Louati, A., Chtourou, R., & Hamzaoui, A. H. (2013). Effect of gamma-irradiation on the colorimetric properties of epoxy-resin films: Potential use in dosimetric application. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 311, 1–4. https://doi.org/10.1016/j.nimb.2013.06.003

Isac, J. (2014). Optical Band Gap Analysis of Nano-Crystalline Ceramic PbSrCaCuO. JOURNAL OF ADVANCES IN PHYSICS, 5(3), 816–822. https://doi.org/10.24297/jap.v5i3.1881

Kattan, M., al Kassiri, H., & Daher, Y. (2011). Using polyvinyl chloride dyed with bromocresol purple in radiation dosimetry. Applied Radiation and Isotopes, 69(2), 377–380. https://doi.org/10.1016/j.apradiso.2010.11.006

Kattan, M., & Daher, Y. (2016). The use of polyvinyl chloride films dyed with methyl red in radiation dosimetry. Internatuinal Journal of Radiation Research, 14(3), 263–267. https://doi.org/10.18869/acadpub.ijrr.14.3.263

Lavalle, M., Corda, U., Fuochi, P. G., Caminati, S., Venturi, M., Kovács, A., Baranyai, M., Sáfrány, A., & Miller, A. (2007). Radiochromic film containing methyl viologen for radiation dosimetry. Radiation Physics and Chemistry, 76(8–9), 1502–1506. https://doi.org/10.1016/j.radphyschem.2007.02.061

Meftah, A., Gharibshahi, E., Soltani, N., Yunus, W., & Saion, E. (2014). Structural, Optical and Electrical Properties of PVA/PANI/Nickel Nanocomposites Synthesized by Gamma Radiolytic Method. Polymers, 6(9), 2435–2450. https://doi.org/10.3390/polym6092435

Mott, N. F., & Davis, E. A. (2012). Electronic processes in non-crystalline materials (2nd ed). Clarendon Press.

Otero, T. F., & Martinez, J. G. (2011). Activation energy for polypyrrole oxidation: Film thickness influence. Journal of Solid State Electrochemistry, 15(6), 1169–1178. https://doi.org/10.1007/s10008-010-1170-1

Rabaeh, K. A., Aljammal, S. A., Eyadeh, M. M., & Abumurad, K. M. (2021). Methyl thymol blue solution and film dosimeter for high dose measurements. Results in Physics, 23, 103980. https://doi.org/10.1016/j.rinp.2021.103980

Rabaeh, K. A., & Basfar, A. A. (2020). A polystyrene film dosimeter containing dithizone dye for high dose applications of gamma-ray source. Radiation Physics and Chemistry, 170, 108646. https://doi.org/10.1016/j.radphyschem.2019.108646

Raouafi, A., Daoudi, M., Jouini, K., Charradi, K., Hamzaoui, A. H., Blaise, P., Farah, K., & Hosni, F. (2018). Effect of gamma irradiation on the color, structure and morphology of nickel-doped polyvinyl alcohol films: Alternative use as dosimeter or irradiation indicator. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 425, 4–10. https://doi.org/10.1016/j.nimb.2018.03.034

Saion, E., . S., . A. D., . S. Z. A., . Z. A., . A. Z., . A. R. M. Z., . K. Z. H. D., & . T. K. (2005). Changes in the Optical Band Gap and Absorption Edge of Gamma-Irradiated Polymer Blends. Journal of Applied Sciences, 5(10), 1825–1829. https://doi.org/10.3923/jas.2005.1825.1829

Singh, S. & Neerja, N. (2007). The effect of gamma-irradiation on the activation energy of bulk and track etching in CR-39 plastic track detector. Radiation Measurements, 42(9), 1507–1509. https://doi.org/10.1016/j.radmeas.2007.09.007

Skuja, L., Kajihara, K., Ikuta, Y., Hirano, M., & Hosono, H. (2004). Urbach absorption edge of silica: Reduction of glassy disorder by fluorine doping. Journal of Non-Crystalline Solids, 345–346, 328–331. https://doi.org/10.1016/j.jnoncrysol.2004.08.038

Soliman, Y. S., Abdel-Fattah, A. A., & Alkhuraiji, T. S. (2018). Radiochromic film containing poly(hexa-2,4-diynylene adipate) as a radiation dosimeter. Applied Radiation and Isotopes, 141, 80–87. https://doi.org/10.1016/j.apradiso.2018.08.016

Susilawati. (2009). Dose Response and Optical Properties of Dyed Poly Vinyl Alcohol-Trichloroacetic Acid Polymeric Blends Irradiated with Gamma-Rays. American Journal of Applied Sciences, 6(12), 2071–2077. https://doi.org/10.3844/ajassp.2009.2071.2077

Susilawati, S., Prayogi, S., Arif, M. F., Ismail, N. M., Bilad, M. R., & Asy’ari, M. (2021). Optical Properties and Conductivity of PVA–H3PO4 (Polyvinyl Alcohol–Phosphoric Acid) Film Blend Irradiated by γ-Rays. Polymers, 13(7), 1065. https://doi.org/10.3390/polym13071065

Talebi, M., Zahedifar, M., & Sadeghi, E. (2019). UVC dosimetry properties of Mn and Ce doped KCl thermoluminescent phosphor produced by co-precipitation method. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 458, 97–104. https://doi.org/10.1016/j.nimb.2019.08.008

Ticoş, D., Scurtu, A., Oane, M., Diplaşu, C., Giubega, G., Călina, I., & Ticoş, C. M. (2019). Complementary dosimetry for a 6 MeV electron beam. Results in Physics, 14, 102377. https://doi.org/10.1016/j.rinp.2019.102377

Wong, C. Y., Wong, W. Y., Loh, K. S., Daud, W. R. W., Lim, K. L., Khalid, M., & Walvekar, R. (2020). Development of Poly(Vinyl Alcohol)-Based Polymers as Proton Exchange Membranes and Challenges in Fuel Cell Application: A Review. Polymer Reviews, 60(1), 171–202. https://doi.org/10.1080/15583724.2019.1641514




DOI: https://doi.org/10.33394/j-lkf.v12i1.11908

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Lensa: Jurnal Kependidikan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.