Co-Precipitation Synthesis and Analysis of Co and Zn Doped Barium M-Hexaferrites
Abstract
Barium hexaferrite (BaFe12O19) is a material of significant interest due to its wide range of applications. In this study, we synthesized barium M-hexaferrites (BaFe12-2xCoxZnxO19) powders through the co-precipitation method, starting from BaCO3 and FeCl3.6H2O powders, with Co and Zn powders used as dopant materials. The variations in x values were set at 0, 0.2, 0.4, 0.6, 0.8, and 1. Our findings indicate that the co-precipitation method is highly effective for synthesizing barium M-hexaferrites (BaFe12-2xCoxZnxO19) nanomaterials, which contain more than 89% iron elements and have an average particle size of 50 nm. The Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA) reveal that phase transformations occur at temperatures of 285°C and in the range of 750-840°C. Further analysis using the Rietveld refinement method demonstrates that the barium M-hexaferrite phase begins to form at relatively low temperatures, with the most optimal yield observed at x = 0.4. At temperatures exceeding 740°C, there is a tendency to form a single-phase α-Fe2O3 (hematite). The introduction of Co and Zn as dopant ions results in only minor changes to the lattice parameters of the basic hexagonal crystal structure. This comprehensive study underscores the viability of the co-precipitation method for producing high-quality barium M-hexaferrites and provides valuable insights into the effects of Co and Zn doping on the structural and thermal properties of these materials.
Keywords
Full Text:
PDFReferences
Abbasi, A., Ghanbari, D., Salavati-Niasari, M., & Hamadanian, M. (2016). Photo-degradation of methylene blue: Photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. Journal of Materials Science: Materials in Electronics, 27(5), 4800–4809. https://doi.org/10.1007/s10854-016-4361-4
Ahmed, M. A., Okasha, N., & Kershi, R. M. (2008). Influence of rare-earth ions on the structure and magnetic properties of barium W-type hexaferrite. Journal of Magnetism and Magnetic Materials, 320(6), 1146–1150. https://doi.org/10.1016/j.jmmm.2007.11.014
Ai, L.-H., & Jiang, J. (2009). Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method. Powder Technology, 195(1), 11–14. https://doi.org/10.1016/j.powtec.2009.05.006
Almessiere, M. A., Slimani, Y., Sertkol, M., Nawaz, M., Baykal, A., & Ercan, I. (2019). The impact of Zr substituted Sr hexaferrite: Investigation on structure, optic and magnetic properties. Results in Physics, 13, 102244. https://doi.org/10.1016/j.rinp.2019.102244
Anand, S., Pauline, S., & Prabagar, C. J. (2020). Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded Polyvinylidenefluoride composite films for electromagnetic interference shielding applications. Polymer Testing, 86, 106504. https://doi.org/10.1016/j.polymertesting.2020.106504
Awadallah, A., Mahmood, S. H., Maswadeh, Y., Bsoul, I., Awawdeh, M., Mohaidat, Q. I., & Juwhari, H. (2016). Structural, magnetic, and Mössbauer spectroscopy of Cu substituted M-type hexaferrites. Materials Research Bulletin, 74, 192–201. https://doi.org/10.1016/j.materresbull.2015.10.034
Bañuelos-Frías, A., Martínez-Guajardo, G., Alvarado-Perea, L., Canizalez-Dávalos, L., Ruiz, F., & Valero-Luna, C. (2019). Light absorption properties of mesoporous barium hexaferrite, BaFe12O19. Materials Letters, 252, 239–243. https://doi.org/10.1016/j.matlet.2019.05.137
Bayrakdar, H., Yalçın, O., Vural, S., & Esmer, K. (2013). Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. Journal of Magnetism and Magnetic Materials, 343, 86–91. https://doi.org/10.1016/j.jmmm.2013.04.079
Cheng, Z., Zhang, J., & Kronmüller, H. (2003). Magnetically soft phase in magnetization reversal processes of nanocomposite Sm 2 Fe 15 Ga 2 C x / α − Fe permanent magnetic materials. Physical Review B, 68(14), 144417. https://doi.org/10.1103/PhysRevB.68.144417
Feng, Y. B., Qiu, T., & Shen, C. Y. (2007). Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. Journal of Magnetism and Magnetic Materials, 318(1–2), 8–13. https://doi.org/10.1016/j.jmmm.2007.04.012
Gultom, G., Rianna, M., Sebayang, P., & Ginting, M. (2020). The effect of Mg–Al binary doped barium hexaferrite for enhanced microwave absorption performance. Case Studies in Thermal Engineering, 18, 100580. https://doi.org/10.1016/j.csite.2019.100580
Hähsler, M., Zimmermann, M., Heißler, S., & Behrens, S. (2020). Sc-doped barium hexaferrite nanodiscs: Tuning morphology and magnetic properties. Journal of Magnetism and Magnetic Materials, 500, 166349. https://doi.org/10.1016/j.jmmm.2019.166349
Harris, V. G., Geiler, A., Chen, Y., Yoon, S. D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P. V., Zuo, X., Patton, C. E., Abe, M., Acher, O., & Vittoria, C. (2009). Recent advances in processing and applications of microwave ferrites. Journal of Magnetism and Magnetic Materials, 321(14), 2035–2047. https://doi.org/10.1016/j.jmmm.2009.01.004
Kanagesan, S., Jesurani, S., Sivakumar, M., Thirupathi, C., & Kalaivani, T. (2011). Effect of Microwave Calcinations on Barium Hexaferrite Synthesized via Sol-Gel Combustion. Journal of Scientific Research, 3(3), 451–456. https://doi.org/10.3329/jsr.v3i3.6483
Kaur, J., Sharma, V., Sharma, V., Veerakumar, V., & Kuanr, B. K. (2016). Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold. AIP Advances, 6(5), 055820. https://doi.org/10.1063/1.4944522
Koutzarova, T., Kolev, S., Ghelev, Ch., Nedkov, I., Vertruen, B., Cloots, R., Henrist, C., & Zaleski, A. (2013). Differences in the structural and magnetic properties of nanosized barium hexaferrite powders prepared by single and double microemulsion techniques. Journal of Alloys and Compounds, 579, 174–180. https://doi.org/10.1016/j.jallcom.2013.06.049
Lin, Y., Liu, Y., Dai, J., Wang, L., & Yang, H. (2018). Synthesis and microwave absorption properties of plate-like BaFe12O19Fe3O4 core-shell composite. Journal of Alloys and Compounds, 739, 202–210. https://doi.org/10.1016/j.jallcom.2017.12.086
Pathak, N., Gupta, S. K., Sanyal, K., Kumar, M., Kadam, R. M., & Natarajan, V. (2014). Photoluminescence and EPR studies on Fe3+ doped ZnAl2O4: An evidence for local site swapping of Fe3+ and formation of inverse and normal phase. Dalton Transactions, 43(24), 9313. https://doi.org/10.1039/c4dt00741g
Primc, D., Makovec, D., Lisjak, D., & Drofenik, M. (2009). Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions. Nanotechnology, 20(31), 315605. https://doi.org/10.1088/0957-4484/20/31/315605
Pullar, R. C. (2012). Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progress in Materials Science, 57(7), 1191–1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
Rösler, S., Wartewig, P., & Langbein, H. (2003). Synthesis and characterization of hexagonal ferrites BaFe12-2xZnxTixO19 (0≤ x≤ 2) by thermal decomposition of freeze-dried precursors. Crystal Research and Technology, 38(11), 927–934. https://doi.org/10.1002/crat.200310115
Rusianto, T., Waziz Wildan, M., Abraha, K., & Kusmono, K. (2015). Characterizations of Ceramic Magnets from Iron Sand. International Journal of Technology, 6(6), 1017. https://doi.org/10.14716/ijtech.v6i6.1572
Shao, L.-H., Shen, S.-Y., Zheng, H., Zheng, P., Wu, Q., & Zheng, L. (2018). Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic. Journal of Electronic Materials, 47(7), 4085–4089. https://doi.org/10.1007/s11664-018-6301-y
Suasmoro, S., Pratapa, S., Hartanto, D., Setyoko, D., & Dani, U. M. (2000). The characterization of mixed titanate Ba1−xSrxTiO3 phase formation from oxalate coprecipitated precursor. Journal of the European Ceramic Society, 20(3), 309–314. https://doi.org/10.1016/S0955-2219(99)00143-0
Ting, T.-H., & Wu, K.-H. (2010). Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. Journal of Magnetism and Magnetic Materials, 322(15), 2160–2166. https://doi.org/10.1016/j.jmmm.2010.02.002
Wang, H., Xu, Y., Jing, L., Huang, S., Zhao, Y., He, M., Xu, H., & Li, H. (2017). Novel magnetic BaFe12O19/g-C3N4 composites with enhanced thermocatalytic and photo-Fenton activity under visible-light. Journal of Alloys and Compounds, 710, 510–518. https://doi.org/10.1016/j.jallcom.2017.03.144
Wu, K. H., Ting, T. H., Wang, G. P., Yang, C. C., & Tsai, C. W. (2008). Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2–40GHz. Synthetic Metals, 158(17–18), 688–694. https://doi.org/10.1016/j.synthmet.2008.04.013
Yu, H.-F., & Liu, P.-C. (2006). Effects of pH and calcination temperatures on the formation of citrate-derived hexagonal barium ferrite particles. Journal of Alloys and Compounds, 416(1–2), 222–227. https://doi.org/10.1016/j.jallcom.2005.08.024
Zhang, W., Sun, A., Pan, X., Han, Y., Zhao, X., Yu, L., Zuo, Z., & Suo, N. (2020). Magnetic transformation of Zn-substituted Mg-Co ferrite nanoparticles: Hard magnetism → soft magnetism. Journal of Magnetism and Magnetic Materials, 506, 166623. https://doi.org/10.1016/j.jmmm.2020.166623
Zhao, T., Jin, W., Wang, Y., Ji, X., Yan, H., Xiong, C., Lou, X., Dang, A., Li, H., & Li, T. (2017). In situ synthesis and electromagnetic wave absorbing properties of sandwich microstructured graphene/La-doped barium ferrite nanocomposite. RSC Advances, 7(59), 37276–37285. https://doi.org/10.1039/C7RA06716J
DOI: https://doi.org/10.33394/j-lkf.v12i1.11732
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Lensa: Jurnal Kependidikan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.