Harvesting and Evaluating Uptake Machropage Induced by Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere

Aulia Charis Aqsha, Mahardian Rahmadi, Dewi Melani Hariyadi

Abstract


Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere has emerged as a therapy for lung infections. Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere consists of Ciprofloxacin HCl, Sodium Alginate, Kappa Carrageenan, and CaCl2 made using the ionotropic gelation method with the aim of delivering the drug via inhalation. Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere exhibits good physical characteristics that can be further studied in vitro using alveolar macrophage cells. Alveolar macrophages demonstrate a high level of effectiveness in removing pathogenic microorganisms from the lungs. More than 80% of alveolar macrophages can be easily obtained through lung lavage for study. This research aims to determine the uptake of Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere by alveolar macrophages. The extraction of alveolar macrophage cells was carried out through the utilization of the BAL (Bronchoalveolar Lavage) method. Pulmosphere was labeled with a fluorescent dye, Rhodamine-B, for visualization. Uptake evaluation was performed using the Nikon Eclipse TS2R Inverted Microscope. The findings suggest that alveolar macrophages have the ability to uptake Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere. This research significantly enhances current knowledge by revealing previously unidentified variables. The results not only question established theories but also provide practical insights for the field of pharmaceutics. As a result, this study deepens our comprehension of certain aspects and sets the stage for future research in related domains.


Keywords


Pulmosphere, Ciprofloxacin HCl; Alveolar macrophage uptake ; Bronchoalveolar Lavage ; Fluorescence

Full Text:

PDF

References


Alipour, M., & Suntres, Z. E. (2014). Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Therapeutic Delivery, 5(4), 409–427. https://doi.org/10.4155/tde.14.13

Allard, B., Panariti, A., & Martin, J. G. (2018). Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.01777

Busch, C. J.-L., Favret, J., Geirsdottir, L., Molawi, K., & Sieweke, M. H. (2019). Isolation and Long-term Cultivation of Mouse Alveolar Macrophages. Bio-Protocol, 9(14). https://doi.org/10.21769/BioProtoc.3302

Chavez-Santoscoy, A. V., Huntimer, L. M., Ramer-Tait, A. E., Wannemuehler, M., & Narasimhan, B. (2012). Harvesting murine alveolar macrophages and evaluating cellular activation induced by polyanhydride nanoparticles. Journal of Visualized Experiments: JoVE, 64, e3883. https://doi.org/10.3791/3883

Dunn, K. W., Kamocka, M. M., & McDonald, J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. American Journal of Physiology. Cell Physiology, 300(4), C723-742. https://doi.org/10.1152/ajpcell.00462.2010

El-Sherbiny, I. M., El-Baz, N. M., & Yacoub, M. H. (2015). Inhaled nano- and microparticles for drug delivery. Global Cardiology Science & Practice, 2015, 2. https://doi.org/10.5339/gcsp.2015.2

Jiang, L. Q., Wang, T. Y., Webster, T. J., Duan, H.-J., Qiu, J. Y., Zhao, Z. M., Yin, X. X., & Zheng, C. L. (2017). Intracellular disposition of chitosan nanoparticles in macrophages: Intracellular uptake, exocytosis, and intercellular transport. International Journal of Nanomedicine, 12, 6383–6398. https://doi.org/10.2147/IJN.S142060

Marcianes, P., Negro, S., Barcia, E., Montejo, C., & Fernández-Carballido, A. (2019). Potential Active Targeting of Gatifloxacin to Macrophages by Means of Surface-Modified PLGA Microparticles Destined to Treat Tuberculosis. AAPS PharmSciTech, 21(1), 15. https://doi.org/10.1208/s12249-019-1552-3

Mehta, M., Deeksha, Sharma, N., Vyas, M., Khurana, N., Maurya, P. K., Singh, H., Andreoli de Jesus, T. P., Dureja, H., Chellappan, D. K., Gupta, G., Wadhwa, R., Collet, T., Hansbro, P. M., Dua, K., & Satija, S. (2019). Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chemico-Biological Interactions, 304, 10–19. https://doi.org/10.1016/j.cbi.2019.02.021

Nayak, D. K., Mendez, O., Bowen, S., & Mohanakumar, T. (2018). Isolation and In Vitro Culture of Murine and Human Alveolar Macrophages. Journal of Visualized Experiments: JoVE, 134, 57287. https://doi.org/10.3791/57287

Parikh, R., Dalwadi, S., Aboti, P., & Patel, L. (2014). Inhaled microparticles of antitubercular antibiotic for in vitro and in vivo alveolar macrophage targeting and activation of phagocytosis. The Journal of Antibiotics, 67(5), 387–394. https://doi.org/10.1038/ja.2014.13

Park, J.-H., Jin, H.-E., Kim, D.-D., Chung, S.-J., Shim, W.-S., & Shim, C.-K. (2013). Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation. International Journal of Pharmaceutics, 441(1), 562–569. https://doi.org/10.1016/j.ijpharm.2012.10.044

Patel, B., Gupta, N., & Ahsan, F. (2015). Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. European Journal of Pharmaceutics and Biopharmaceutics, 89, 163–174. https://doi.org/10.1016/j.ejpb.2014.12.001

Ragazzi, M., Piana, S., Longo, C., Castagnetti, F., Foroni, M., Ferrari, G., Gardini, G., & Pellacani, G. (2014). Fluorescence confocal microscopy for pathologists. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 27(3), 460–471. https://doi.org/10.1038/modpathol.2013.158

Santoso, T., Diniatik, D., & Kusuma, A. (2013). Immunostimulatory effect of ethanol extract of katuk leaves (Sauropus androgynus L Merr) on macrophage phagocytic activity. 10, 2013. https://doi.org/10.30595/pji.v10i1.786

Song, X., Lin, Q., Guo, L., Fu, Y., Han, J., Ke, H., Sun, X., Gong, T., & Zhang, Z. (2015). Rifampicin Loaded Mannosylated Cationic Nanostructured Lipid Carriers for Alveolar Macrophage-specific Delivery. Pharmaceutical Research, 32(5), 1741–1751. https://doi.org/10.1007/s11095-014-1572-3

Soni, S. S., Kim, K. M., Sarkar, B., & Rodell, C. B. (2024). Uptake of Cyclodextrin Nanoparticles by Macrophages is Dependent on Particle Size and Receptor-Mediated Interactions. ACS Applied Bio Materials, 7(8), 4856–4866. https://doi.org/10.1021/acsabm.3c00985

Torres, M. P., Wilson-Welder, J. H., Lopac, S. K., Phanse, Y., Carrillo-Conde, B., Ramer-Tait, A. E., Bellaire, B. H., Wannemuehler, M. J., & Narasimhan, B. (2011). Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomaterialia, 7(7), 2857–2864. https://doi.org/10.1016/j.actbio.2011.03.023

Underwood, W., & Anthony, R. (2020). AVMA guidelines for the euthanasia of animals: 2020 edition. American Veterinary Medical Association.

Wijagkanalan, W., Kawakami, S., Takenaga, M., Igarashi, R., Yamashita, F., & Hashida, M. (2008). Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. Journal of Controlled Release: Official Journal of the Controlled Release Society, 125(2), 121–130. https://doi.org/10.1016/j.jconrel.2007.10.011




DOI: https://doi.org/10.33394/j-ps.v12i4.10674

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Aulia Charis Aqsha, Mahardian Rahmadi, Dewi Melani Hariyadi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License
J-PS (Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram) p-ISSN (print) 2338-4530, e-ISSN (online) 2540-7899 is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats