Harvesting and Evaluating Uptake Machropage Induced by Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere
Abstract
Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere has emerged as a therapy for lung infections. Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere consists of Ciprofloxacin HCl, Sodium Alginate, Kappa Carrageenan, and CaCl2 made using the ionotropic gelation method with the aim of delivering the drug via inhalation. Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere exhibits good physical characteristics that can be further studied in vitro using alveolar macrophage cells. Alveolar macrophages demonstrate a high level of effectiveness in removing pathogenic microorganisms from the lungs. More than 80% of alveolar macrophages can be easily obtained through lung lavage for study. This research aims to determine the uptake of Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere by alveolar macrophages. The extraction of alveolar macrophage cells was carried out through the utilization of the BAL (Bronchoalveolar Lavage) method. Pulmosphere was labeled with a fluorescent dye, Rhodamine-B, for visualization. Uptake evaluation was performed using the Nikon Eclipse TS2R Inverted Microscope. The findings suggest that alveolar macrophages have the ability to uptake Ciprofloxacin HCl-Alginate-Carrageenan Pulmosphere. This research significantly enhances current knowledge by revealing previously unidentified variables. The results not only question established theories but also provide practical insights for the field of pharmaceutics. As a result, this study deepens our comprehension of certain aspects and sets the stage for future research in related domains.
Keywords
Full Text:
PDFReferences
Alipour, M., & Suntres, Z. E. (2014). Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Therapeutic Delivery, 5(4), 409–427. https://doi.org/10.4155/tde.14.13
Allard, B., Panariti, A., & Martin, J. G. (2018). Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.01777
Busch, C. J.-L., Favret, J., Geirsdottir, L., Molawi, K., & Sieweke, M. H. (2019). Isolation and Long-term Cultivation of Mouse Alveolar Macrophages. Bio-Protocol, 9(14). https://doi.org/10.21769/BioProtoc.3302
Chavez-Santoscoy, A. V., Huntimer, L. M., Ramer-Tait, A. E., Wannemuehler, M., & Narasimhan, B. (2012). Harvesting murine alveolar macrophages and evaluating cellular activation induced by polyanhydride nanoparticles. Journal of Visualized Experiments: JoVE, 64, e3883. https://doi.org/10.3791/3883
Dunn, K. W., Kamocka, M. M., & McDonald, J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. American Journal of Physiology. Cell Physiology, 300(4), C723-742. https://doi.org/10.1152/ajpcell.00462.2010
El-Sherbiny, I. M., El-Baz, N. M., & Yacoub, M. H. (2015). Inhaled nano- and microparticles for drug delivery. Global Cardiology Science & Practice, 2015, 2. https://doi.org/10.5339/gcsp.2015.2
Jiang, L. Q., Wang, T. Y., Webster, T. J., Duan, H.-J., Qiu, J. Y., Zhao, Z. M., Yin, X. X., & Zheng, C. L. (2017). Intracellular disposition of chitosan nanoparticles in macrophages: Intracellular uptake, exocytosis, and intercellular transport. International Journal of Nanomedicine, 12, 6383–6398. https://doi.org/10.2147/IJN.S142060
Marcianes, P., Negro, S., Barcia, E., Montejo, C., & Fernández-Carballido, A. (2019). Potential Active Targeting of Gatifloxacin to Macrophages by Means of Surface-Modified PLGA Microparticles Destined to Treat Tuberculosis. AAPS PharmSciTech, 21(1), 15. https://doi.org/10.1208/s12249-019-1552-3
Mehta, M., Deeksha, Sharma, N., Vyas, M., Khurana, N., Maurya, P. K., Singh, H., Andreoli de Jesus, T. P., Dureja, H., Chellappan, D. K., Gupta, G., Wadhwa, R., Collet, T., Hansbro, P. M., Dua, K., & Satija, S. (2019). Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chemico-Biological Interactions, 304, 10–19. https://doi.org/10.1016/j.cbi.2019.02.021
Nayak, D. K., Mendez, O., Bowen, S., & Mohanakumar, T. (2018). Isolation and In Vitro Culture of Murine and Human Alveolar Macrophages. Journal of Visualized Experiments: JoVE, 134, 57287. https://doi.org/10.3791/57287
Parikh, R., Dalwadi, S., Aboti, P., & Patel, L. (2014). Inhaled microparticles of antitubercular antibiotic for in vitro and in vivo alveolar macrophage targeting and activation of phagocytosis. The Journal of Antibiotics, 67(5), 387–394. https://doi.org/10.1038/ja.2014.13
Park, J.-H., Jin, H.-E., Kim, D.-D., Chung, S.-J., Shim, W.-S., & Shim, C.-K. (2013). Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation. International Journal of Pharmaceutics, 441(1), 562–569. https://doi.org/10.1016/j.ijpharm.2012.10.044
Patel, B., Gupta, N., & Ahsan, F. (2015). Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. European Journal of Pharmaceutics and Biopharmaceutics, 89, 163–174. https://doi.org/10.1016/j.ejpb.2014.12.001
Ragazzi, M., Piana, S., Longo, C., Castagnetti, F., Foroni, M., Ferrari, G., Gardini, G., & Pellacani, G. (2014). Fluorescence confocal microscopy for pathologists. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 27(3), 460–471. https://doi.org/10.1038/modpathol.2013.158
Santoso, T., Diniatik, D., & Kusuma, A. (2013). Immunostimulatory effect of ethanol extract of katuk leaves (Sauropus androgynus L Merr) on macrophage phagocytic activity. 10, 2013. https://doi.org/10.30595/pji.v10i1.786
Song, X., Lin, Q., Guo, L., Fu, Y., Han, J., Ke, H., Sun, X., Gong, T., & Zhang, Z. (2015). Rifampicin Loaded Mannosylated Cationic Nanostructured Lipid Carriers for Alveolar Macrophage-specific Delivery. Pharmaceutical Research, 32(5), 1741–1751. https://doi.org/10.1007/s11095-014-1572-3
Soni, S. S., Kim, K. M., Sarkar, B., & Rodell, C. B. (2024). Uptake of Cyclodextrin Nanoparticles by Macrophages is Dependent on Particle Size and Receptor-Mediated Interactions. ACS Applied Bio Materials, 7(8), 4856–4866. https://doi.org/10.1021/acsabm.3c00985
Torres, M. P., Wilson-Welder, J. H., Lopac, S. K., Phanse, Y., Carrillo-Conde, B., Ramer-Tait, A. E., Bellaire, B. H., Wannemuehler, M. J., & Narasimhan, B. (2011). Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomaterialia, 7(7), 2857–2864. https://doi.org/10.1016/j.actbio.2011.03.023
Underwood, W., & Anthony, R. (2020). AVMA guidelines for the euthanasia of animals: 2020 edition. American Veterinary Medical Association.
Wijagkanalan, W., Kawakami, S., Takenaga, M., Igarashi, R., Yamashita, F., & Hashida, M. (2008). Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. Journal of Controlled Release: Official Journal of the Controlled Release Society, 125(2), 121–130. https://doi.org/10.1016/j.jconrel.2007.10.011
DOI: https://doi.org/10.33394/j-ps.v12i4.10674
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Aulia Charis Aqsha, Mahardian Rahmadi, Dewi Melani Hariyadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
J-PS (Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram) p-ISSN (print) 2338-4530, e-ISSN (online) 2540-7899 is licensed under a Creative Commons Attribution 4.0 International License.