Do Computational Thinking and Self Regulated Learning Affect Computer Programming Problem Solving Skills? : An Experimental Study
Abstract
This study aims to analyze the effect of computational thinking and self regulated learning on computer programming problem-solving skills. The research used a quasi-experiment with a factorial design. Research sampling using a purposive sampling technique. The sampling of this study used a purposive sampling technique, namely students of Bumigora University, Indonesia. The data collected were in the form of tests with data analysis techniques using inferential statistics. The results showed the fulfillment of the prerequisite tests of normality and homogeneity with each Sig value obtained > 0,05. The paired sample t-test test in the control and experimental groups obtained each Sig value < 0.05, so it can be concluded that there is a significant difference in student learning outcomes in each control group and experimental group. The independent sample t-test test obtained a Sig value < 0.05, so it can be concluded that there is a significant difference between the computational thinking method and the conventional learning method. The independent sample t-test test obtained a Sig value < 0.05, so it can be concluded that there is a significant difference between high and low self-regulated learning. Factorial ANOVA test obtained Sig value <0.05, so it can be concluded that the interaction between learning methods and self-regulated learning makes a significant difference in the ability to solve computer programming problems. The implications of applying computational thinking methods and developing self-regulated learning skills significantly improved problem-solving skills in computer programming, thus supporting the need to integrate this approach into curricula and teaching strategies.
Keywords
Full Text:
PDFReferences
Abouelenein, Y. A. M., & Nagy Elmaadaway, M. A. (2023). Impact of Teaching a Neuro-Computerized Course Through VLE to Develop Computational Thinking Among Mathematics Pre-service Teachers. Journal of Educational Computing Research, 61(6), 1175 – 1206. https://doi.org/10.1177/07356331231165099
Adanır, G. A., Delen, I., & Gulbahar, Y. (2024). Research trends in K-5 computational thinking education: a bibliometric analysis and ideas to move forward. Education and Information Technologies, 29(3), 3589 – 3614. https://doi.org/10.1007/s10639-023-11974-4
Affandy, H., Sunarno, W., Suryana, R., & Harjana. (2024). Integrating creative pedagogy into problem-based learning: The effects on higher order thinking skills in science education. Thinking Skills and Creativity, 53. https://doi.org/10.1016/j.tsc.2024.101575
Agbo, F. J., Olaleye, S. A., Bower, M., & Oyelere, S. S. (2023). Examining the relationships between students’ perceptions of technology, pedagogy, and cognition: the case of immersive virtual reality mini games to foster computational thinking in higher education. Smart Learning Environments, 10(1). https://doi.org/10.1186/s40561-023-00233-1
Ahsan, M. G. K., Cahyono, A. N., & Kharisudin, I. (2024). Designing digital math trail environment assisted by augmented reality using mathematical modeling learning approach. In H. H. & R. T. (Eds.), AIP Conference Proceedings (Vol. 3106, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0215762
Akramova, G., Ma’murov, B., Akramova, S., Qo’ldoshev, R., & Shodmonova, A. (2024). Methods of using STEAM technologies in the development of pupils’ computational thinking. In Y. S. & S. I. (Eds.), E3S Web of Conferences (Vol. 538). EDP Sciences. https://doi.org/10.1051/e3sconf/202453805034
Alzahrani, N. M. (2020). Augmented reality: A systematic review of its benefits and challenges in e-learning contexts. Applied Sciences (Switzerland), 10(16). https://doi.org/10.3390/app10165660
Amidi, & Khoirunnisa, K. (2024). Mathematical Connection Ability in Learning Assisted by Teaching Materials Based on Realistic Mathematics Education with CORE Model and Outdoor Learning Strategy. In H. N., W. D., M. null, S. null, Z. M.S., N. F., & P. D. (Eds.), AIP Conference Proceedings (Vol. 3046, Issue 1). American Institute of Physics Inc. https://doi.org/10.1063/5.0196942
Amin, S., Uddin, M. I., Alarood, A. A., Mashwani, W. K., Alzahrani, A. O., & Alzahrani, H. A. (2024). An adaptable and personalized framework for top-N course recommendations in online learning. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56497-1
Angraini, L. M., Yolanda, F., & Muhammad, I. (2023). Augmented Reality: The Improvement of Computational Thinking Based on Students’ Initial Mathematical Ability. International Journal of Instruction, 16(3), 1033 – 1054. https://doi.org/10.29333/iji.2023.16355a
Balazinec, M., Radanovic, I., & Bulic, M. (2024). Self-Regulated Learning in Science Classes with a Discovery Learning Environment and Collaborative Discovery Learning Environment. Education Sciences, 14(6). https://doi.org/10.3390/educsci14060669
Barricelli, B. R., Fogli, D., Gargioni, L., Locoro, A., & Valtolina, S. (2024). Towards the Unification of Computational Thinking and EUDability: Two Cases from Healthcare. ACM International Conference Proceeding Series. https://doi.org/10.1145/3656650.3656671
Bratitsis, T., Tsapara, M., Melliou, K., Busuttil, L., Vassallo, D., Callus, J., Meireles, G., Koliakou, I., Kojok, N. T., & Sousa, S. (2024). Cultivating Computational Thinking in Early Years Through Board Games. The Cthink.it Approach. Lecture Notes in Networks and Systems, 937 LNNS, 78 – 89. https://doi.org/10.1007/978-3-031-56075-0_8
Bubnic, B., Mernik, M., & Kosar, T. (2024). Exploring the Predictive Potential of Complex Problem-Solving in Computing Education: A Case Study in the Introductory Programming Course. Mathematics, 12(11). https://doi.org/10.3390/math12111655
Chang, C.-Y., Setiani, I., Darmawansah, D., & Yang, J. C. (2024). Effects of game-based learning integrated with the self-regulated learning strategy on nursing students’ entrustable professional activities: A quasi-experimental study. Nurse Education Today, 139. https://doi.org/10.1016/j.nedt.2024.106213
Chen, C.-Y., Su, S.-W., Lin, Y.-Z., & Sun, C.-T. (2023). The Effect of Time Management and Help-Seeking in Self-Regulation-Based Computational Thinking Learning in Taiwanese Primary School Students. Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612494
Chen, Y., Okyay, M. S., & Wong, B. M. (2024). MISTER-T: An open-source software package for quantum optimal control of multi-electron systems on arbitrary geometries. Computer Physics Communications, 302. https://doi.org/10.1016/j.cpc.2024.109248
Chen, Y., Sandhofer, S. N., & Wong, B. M. (2024). SHORYUKEN: An open-source software package for calculating nonlocal exchange interactions in nanowires. Computer Physics Communications, 300. https://doi.org/10.1016/j.cpc.2024.109197
Chen, Y., Zhao, Y., & Wang, M. (2024). An Empirical Study on the Effect of Gamified Teaching in Scratch Courses on Developing Elementary Students’ Computational Thinking. 2024 13th International Conference on Educational and Information Technology, ICEIT 2024, 78 – 83. https://doi.org/10.1109/ICEIT61397.2024.10541025
Cheng, L., Wang, X., & Ritzhaupt, A. D. (2023). The Effects of Computational Thinking Integration in STEM on Students’ Learning Performance in K-12 Education: A Meta-analysis. Journal of Educational Computing Research, 61(2), 416 – 443. https://doi.org/10.1177/07356331221114183
Cheng, S.-C., Hwang, G.-J., & Chen, P.-Y. (2024). Facilitating creativity, collaboration, and computational thinking in group website design: a concept mapping-based mobile flipped learning approach. International Journal of Mobile Learning and Organisation, 18(2), 169 – 193. https://doi.org/10.1504/IJMLO.2024.137613
Christensen, D., & Lombardi, D. (2024). Computational thinking through the lens of biological evolution learning: enhancing understanding through the levels of biological organization and computational complexity. Evolution: Education and Outreach, 17(1). https://doi.org/10.1186/s12052-024-00202-3
Cırıt, D. K., & Aydemir, S. (2023). Online scratch activities during the COVID-19 pandemic: Computational and creative thinking. International Journal of Evaluation and Research in Education, 12(4), 2111 – 2120. https://doi.org/10.11591/ijere.v12i4.24938
Early, N. Q., Hidalgo, L. O., & Salmon, C. (2024). Student Perceived Confidence with Complex Patients Before and After a Simulated Case-Based Course. Journal of Allied Health, 53(1), E27–E35. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186744796&partnerID=40&md5=9ab68ffbf2d405fb4b61c239697caf42
Elnour, A. A. (2022). Audience response systems as an interim measure of quality using Bloom’s taxonomy of learning outcomes. Pharmacy Education, 22(1), 331 – 335. https://doi.org/10.46542/pe.2022.221.331335
Fan, C., & Wang, J. (2024). Configurational impact of self-regulated writing strategy, writing anxiety, and perceived writing difficulty on EFL writing performance: an fsQCA approach. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-61537-x
Faridi, M., & Izadpanah, S. (2024). The Study of EFL Learners’ Perception of Using E-learning, Self-Regulation and Constructivism in English Classrooms: Teachers, Intermediate and Advanced Learners′ 1Attitude. Journal of Language and Education, 10(2), 45 – 58. https://doi.org/10.17323/jle.2024.12492
Feldman-Maggor, Y., Tuvi-Arad, I., & Blonder, R. (2024). Navigating the online learning journey by self-regulation: Teachers as learners. Computers and Education, 219. https://doi.org/10.1016/j.compedu.2024.105074
Findyartini, A., Greviana, N., Hanum, C., Wiyarta, E., Novarianto, J. K., Nugroho Supranoto, Y. T., Rafa Ayusha, M. A., Oktaria, D., Sueningrum, A. S., Pratiwi, Y. S., Pamungkasari, E. P., Prihanti, G. S., Zhuhra, R. T., Widjaja, Y., Wijaya, D. P., & Atta, K. (2024). “How is social media used for learning?”: relationships between social media use by medical students with their self-regulated learning skills. BMC Medical Education, 24(1). https://doi.org/10.1186/s12909-024-05222-7
Follmer, D. J., Hut, M., Spitznogle, R., & Baker, A. C. (2024). First-generation student pathways to persistence and degree attainment: The roles of deeper learning and self-regulated learning beliefs. Learning and Individual Differences, 113. https://doi.org/10.1016/j.lindif.2024.102471
Fuadiyah, A., Kurniadi, E., & Suganda, V. A. (2024). Representational Ability of Mathematical Models for Junior High School Student Using Mathematical Modeling Approaches Through ICT Assisted Learning Media. In P. R.I.I., H. null, B. R., T. K., S. M., M. null, & K. D. (Eds.), AIP Conference Proceedings (Vol. 3052, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0200971
Godina, R., & Matias, J. C. O. (2018). Improvement of the statistical process control through an enhanced test of normality. 2018 7th International Conference on Industrial Technology and Management, ICITM 2018, 2018-January, 17–21. https://doi.org/10.1109/ICITM.2018.8333912
Gökçe, S., & Yenmez, A. A. (2023). Ingenuity of scratch programming on reflective thinking towards problem solving and computational thinking. Education and Information Technologies, 28(5), 5493 – 5517. https://doi.org/10.1007/s10639-022-11385-x
Gonçalves, R. F., Passos, O. M., & De Amorim, R. X. (2024). Investigating the Competencies and Skills of Computer Professionals. In S. W.A.F., M. J.C., de Classe T.M., S. V., de Castro R.M., & D. J.M.N. (Eds.), ACM International Conference Proceeding Series. Association for Computing Machinery. https://doi.org/10.1145/3658271.3658308
Hamzah, N., Zakaria, N., Ariffin, A., & Rubani, S. N. K. (2024). The Effectiveness of Collaborative Learning in Improving Higher Level Thinking Skills and Reflective Skills. Journal of Advanced Research in Applied Sciences and Engineering Technology, 42(1), 191 – 198. https://doi.org/10.37934/araset.42.1.191198
Hartatiana, Rahmawati, D., Astuti, M., Nurlaeli, Sairi, A. P., Romli, Prihatin, N. Y., & Lutfiah, H. (2024). Students’ mathematical literacy through integrated numeration learning modules of Islamic value. In S. A., R. U., S. M., & R. K. (Eds.), AIP Conference Proceedings (Vol. 3058, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0200934
Hasana, H. R., Rifandi, R., Rani, M. M., & Martin, S. N. (2024). Analysis of students’ critical thinking ability in linear program material viewed from their cognitive style. In Y. null, R. P.C., W. G.K., S. D.P., T. F., R. R., & R. N.A. (Eds.), AIP Conference Proceedings (Vol. 3024, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0204460
Hijón-Neira, R., Pizarro, C., French, J., Palacios-Alonso, D., & Çoban, E. (2024). Computational Thinking Measurement of CS University Students. Applied Sciences (Switzerland), 14(12). https://doi.org/10.3390/app14125261
Huang, R., Zhou, Z., Liu, Y., Lin, M., Gong, M., Xian, S., Yin, H., Meng, T., Wang, X., Wang, Y., Chen, W., Zhang, C., Du, E., Liu, X., Lin, Q., Wu, H., Huang, Z., Zhang, J., Zhang, G., & Ji, S. (2024). Empathy in undergraduate medical students: a multi-center cross-sectional study in China. BMC Psychiatry, 24(1). https://doi.org/10.1186/s12888-023-05350-2
Irwandani, Santi, K., Pricilia, A., Sari, P. M., Rahmayanti, H., Ichsan, I. Z., Nurfadhilah, & Sison, M. H. (2023). Bibliometric analysis trend of computational thinking research in physics: Thinking skills to support environmental sustainability for elementary and high schools. In S. A., U. R., S. M., & P. F.G. (Eds.), AIP Conference Proceedings (Vol. 2595). American Institute of Physics Inc. https://doi.org/10.1063/5.0124196
Jayakumar, R., Rajan, T. P. D., & Savithri, S. (2024). A GPU based accelerated solver for simulation of heat transfer during metal casting process. Modelling and Simulation in Materials Science and Engineering, 32(5). https://doi.org/10.1088/1361-651X/ad4406
Jhunjhunwala, R., Monzon, J., Faria, I., Escalona, G., Zinco, A., Ottolino, P., Reyna, F., Raykar, N., & Asturias, S. (2024). A low-cost, DIY tourniquet simulator with built-in self-assessment for prehospital providers in Guatemala city. World Journal of Surgery, 48(6), 1282 – 1289. https://doi.org/10.1002/wjs.12158
Katuk, N., Vergallo, R., & Sugiharto, T. (2024). The future of human-computer integration: Industry 5.0 technology, tools, and algorithms. In The Future of Human-Computer Integration: Industry 5.0 Technology, Tools, and Algorithms. CRC Press. https://doi.org/10.1201/9781003479727
Krysl, P. (2024). Parallel assembly of finite element matrices on multicore computers. Computer Methods in Applied Mechanics and Engineering, 428. https://doi.org/10.1016/j.cma.2024.117076
Kurt, A., Çıkman, A. Ş., Balaban, E., Gümrükçü, Z., Mercantepe, T., Tümkaya, L., & Karabağ, M. (2024). The effects of mineral trioxide aggregate and second-generation autologous growth factor on pulpotomy via TNF-α and NF-kβ/p65 pathways. BMC Oral Health, 24(1). https://doi.org/10.1186/s12903-024-04577-z
Lee, H.-Y., Wu, T.-T., Lin, C.-J., Wang, W.-S., & Huang, Y.-M. (2024). Integrating Computational Thinking Into Scaffolding Learning: An Innovative Approach to Enhance Science, Technology, Engineering, and Mathematics Hands-On Learning. Journal of Educational Computing Research, 62(2), 431 – 467. https://doi.org/10.1177/07356331231211916
Lei, Y. (2024). Unlocking the secrets of STEM success: Exploring the interplay of motivation to learn science, self-regulation, and emotional intelligence from a perspective of self-determination theory. Learning and Motivation, 87. https://doi.org/10.1016/j.lmot.2024.102012
Li, J., Li, L., Wang, Q., Xue, W., Liang, J., & Shi, J. (2024). Parallel optimization and application of unstructured sparse triangular solver on new generation of Sunway architecture. Parallel Computing, 120. https://doi.org/10.1016/j.parco.2024.103080
Liu, Q., Shi, W., Chen, Z., & Shang, G. (2018). Statistical distribution modeling and two-step parameter identification of vehicle bridge displacement spectrum. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 34(23), 67–75. https://doi.org/10.11975/j.issn.1002-6819.2018.23.008
Lopez-Parra, R. D., Subramaniam, R. C., & Morphew, J. (2023). Promoting Computational Thinking in Integrated Engineering Design and Physics Labs. ASEE Annual Conference and Exposition, Conference Proceedings. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172167570&partnerID=40&md5=718d8abb851de7d478e8ee389fda6c18
Luszczek, P., Abdelfattah, A., Anzt, H., Suzuki, A., & Tomov, S. (2024). Batched sparse and mixed-precision linear algebra interface for efficient use of GPU hardware accelerators in scientific applications. Future Generation Computer Systems, 160, 359 – 374. https://doi.org/10.1016/j.future.2024.06.004
Lv, L., Zhong, B., & Liu, X. (2023). A literature review on the empirical studies of the integration of mathematics and computational thinking. Education and Information Technologies, 28(7), 8171 – 8193. https://doi.org/10.1007/s10639-022-11518-2
Ma, L., & She, L. (2024). Self-Regulated Learning and Academic Success in Online College Learning. Asia-Pacific Education Researcher, 33(3), 519 – 533. https://doi.org/10.1007/s40299-023-00748-8
Malkoc, S., Steinmaurer, A., Gütl, C., Luttenberger, S., & Paechter, M. (2024). Coding Decoded: Exploring Course Achievement and Gender Disparities in an Online Flipped Classroom Programming Course. Education Sciences, 14(6). https://doi.org/10.3390/educsci14060634
Massouti, A., Shaya, N., & Qareiny, S. M. A. (2024). Exploring the nexus between female school leaders’ perceptions of distributed instructional leadership, socio-cultural dynamics, and student achievement in the Arab world. International Journal of Educational Research Open, 7. https://doi.org/10.1016/j.ijedro.2024.100372
Mittenbühler, M., Zhang, J., & Benigni, A. (2024). Automatically optimized component model computation for power system simulation on GPU. Electric Power Systems Research, 235. https://doi.org/10.1016/j.epsr.2024.110740
Mousavi, S. K., Javadzadeh, A., Hasankhani, H., & Parizad, Z. A. (2024). Relationship between learning styles and clinical competency in nursing students. BMC Medical Education, 24(1). https://doi.org/10.1186/s12909-024-05432-z
Mukushev, B., Bazarbekova, A., Ibatayev, Z., Sydykova, Z., & Mukushev, S. (2024). The role of self-organization theory in the development of students’ interdisciplinary research ability. International Journal of Evaluation and Research in Education, 13(4), 2527 – 2535. https://doi.org/10.11591/ijere.v13i4.28856
Muslimahayati, Bulan, D. D., Ramli, M. N., Murtadlo, A., & Mubyarto, N. (2023). Mathematical disposition ability through realistic mathematics learning approach with an ethnomathematics of Suku Anak Dalam (RME SAD). In P. W.D., A. J., M. B., H. Y., & de Villiers M. (Eds.), AIP Conference Proceedings (Vol. 2811, Issue 1). American Institute of Physics Inc. https://doi.org/10.1063/5.0142443
Namaziandost, E., Kargar Behbahani, H., & Heydarnejad, T. (2024). Tapping the alphabets of learning-oriented assessment: self-assessment, classroom climate, mindsets, trait emotional intelligence, and academic engagement are in focus. Language Testing in Asia, 14(1). https://doi.org/10.1186/s40468-024-00293-1
Nguyen, H. L. (2024). Individual stories of agency: an exploratory study into the pandemic impact on students’ employability skills. Higher Education, Skills and Work-Based Learning, 14(3), 529 – 544. https://doi.org/10.1108/HESWBL-05-2023-0111
Ouyang, F., & Xu, W. (2024). The effects of educational robotics in STEM education: a multilevel meta-analysis. International Journal of STEM Education, 11(1). https://doi.org/10.1186/s40594-024-00469-4
Pardamean, B., Suparyanto, T., Cenggoro, T. W., Sudigyo, D., & Anugrahana, A. (2022). AI-Based Learning Style Prediction in Online Learning for Primary Education. IEEE Access, 10, 35725 – 35735. https://doi.org/10.1109/ACCESS.2022.3160177
Park, H. J., & Jeon, Y. J. (2022). A Design and Application of Software Liberal Arts Course based on CT-CPS Model for Developing Creative Problem-Solving Ability and Learning Motivation of Non-software Majors. International Journal on Informatics Visualization, 6(2), 317 – 326. https://doi.org/10.30630/joiv.6.2.996
Patrício, M., Ferreira, F., Oliveiros, B., & Caramelo, F. (2017). Comparing the performance of normality tests with ROC analysis and confidence intervals. Communications in Statistics: Simulation and Computation, 46(10), 7535–7551. https://doi.org/10.1080/03610918.2016.1241410
Pereles, A., Martínez, A. I. M., & Romero-García, C. (2024). MOTIVATION, SELF-REGULATION AND STUDY APPROACHES TO LEARNING IN ONLINE POSTGRADUATE UNIVERSITY STUDENTS. Journal of Educators Online, 21(3). https://doi.org/10.9743/JEO.2024.21.3.11
Pietros, J., Shim, M., & Sweetman, S. (2023). Predicting Computational Thinking in Elementary Science Lessons Using a Multilevel Model Approach. Education Research International, 2023. https://doi.org/10.1155/2023/3136885
Prasetyo, W., & Pramudita, D. A. (2023). Development of virtual reality-based educational game to improve student’s computational thinking skills. In I. N., S. Y., S. E., F. V.N., & A. A.D. (Eds.), AIP Conference Proceedings (Vol. 2727). American Institute of Physics Inc. https://doi.org/10.1063/5.0151680
Purnomo, E. A., Sukestiyarno, Y. L., Junaedi, I., & Agoestanto, A. (2024). Stages of Problem-Solving in Answering HOTS-Based Questions in Differential Calculus Courses. Mathematics Teaching-Research Journal, 15(6), 116 – 145. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188180966&partnerID=40&md5=59b3276a9879c957474ebded208bbb38
Purwasih, R., Turmudi, & Dahlan, J. A. (2024). How do you solve number pattern problems through mathematical semiotics analysis and computational thinking? Journal on Mathematics Education, 15(2), 403 – 430. https://doi.org/10.22342/jme.v15i2.pp403-430
Radović, S., Seidel, N., Menze, D., & Kasakowskij, R. (2024). Investigating the effects of different levels of students’ regulation support on learning process and outcome: In search of the optimal level of support for self-regulated learning. Computers and Education, 215. https://doi.org/10.1016/j.compedu.2024.105041
Rameli, M. R. M., Alhassora, N. S. A., Mazlan, A. N., Hoon, T. S., Mohamed, S. R., & Hong, J. B. Z. (2025). Relationship between Self-regulated Learning with Academic Buoyancy: A Case Study among Malaysia FELDA Secondary School Students. Journal of Advanced Research in Applied Sciences and Engineering Technology, 45(1), 202 – 214. https://doi.org/10.37934/araset.45.1.202214
Raza, K., Li, S., & Chua, C. (2024). A Conceptual Framework on Imaginative Education-Based Engineering Curriculum. Science and Education, 33(4), 923 – 936. https://doi.org/10.1007/s11191-022-00415-2
Rincon-Flores, E. G., Castano, L., Guerrero Solis, S. L., Olmos Lopez, O., Rodríguez Hernández, C. F., Castillo Lara, L. A., & Aldape Valdés, L. P. (2024). Improving the learning-teaching process through adaptive learning strategy. Smart Learning Environments, 11(1). https://doi.org/10.1186/s40561-024-00314-9
Rusmansyah, Bakti, I., Sasmita, H., Hamid, A., Aufa, M. N., & Kusuma, A. E. (2024). Implementation of the flipped classroom-edmodo model to improve SRL and student learning outcomes. In A. A., C. B., A. B., A. D., W. F.C., B. M.A.H., P. S., & S. L.A. (Eds.), AIP Conference Proceedings (Vol. 3116, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0210759
Samadi, F., Jafarigohar, M., Saeedi, M., Ganji, M., & Khodabandeh, F. (2024). Impact of flipped classroom on EFL learners’ self- regulated learning and higher-order thinking skills during the Covid19 pandemic. Asian-Pacific Journal of Second and Foreign Language Education, 9(1). https://doi.org/10.1186/s40862-023-00246-w
Schmitt, U., Moser, B., Lorenz, C. S., & Réfrégier, A. (2023). sympy2c: From symbolic expressions to fast C/C++ functions and ODE solvers in Python. Astronomy and Computing, 42. https://doi.org/10.1016/j.ascom.2022.100666
Simarmata, M. T. A., Lee, G.-G., Ajicahyadi, H., & Wang, K.-J. (2024). Determinant factors of distance self-learning performance on computer programming language education - a concept map approach. Education and Information Technologies, 29(7), 8111 – 8130. https://doi.org/10.1007/s10639-023-12142-4
Sukardi, Setyawan, H., Risfendra, Usmeldi, & Yanto, D. T. P. (2024). Effectiveness of Robotic Technology in Vocational Education: A Meta-Analysis. International Journal of Information and Education Technology, 14(4), 521 – 532. https://doi.org/10.18178/ijiet.2024.14.4.2073
Supriadi, S., Alfarisa, F., Hanif, M., Rosita, R., Nurfitri, E., & Nurazizah, E. (2023). The ethnomathematics learning with Endog-Endogan games to enhance mathematical modeling ability in integer operation and fractional number calculation of primary school students. In S. null, S. K., C. E., M. null, L. C.P., & A. S. (Eds.), AIP Conference Proceedings (Vol. 2614). American Institute of Physics Inc. https://doi.org/10.1063/5.0125834
Susilawati, W., & Sugilar, H. (2024). Critical thinking through learning models based on Edmodo eliciting activities. In S. A., R. U., S. M., & R. K. (Eds.), AIP Conference Proceedings (Vol. 3058, Issue 1). American Institute of Physics. https://doi.org/10.1063/5.0202098
Takács, R., Takács, S., Kárász, J. T., Oláh, A., & Horváth, Z. (2024). Applying Q-methodology to investigate computer science teachers’ preferences about students’ skills and knowledge for obtaining a degree. Humanities and Social Sciences Communications, 11(1). https://doi.org/10.1057/s41599-024-02794-z
Tang, C. (2021). Computer-aided Linear Algebra Course on Jupyter-Python Notebook for Engineering Undergraduates. Journal of Physics: Conference Series, 1815(1). https://doi.org/10.1088/1742-6596/1815/1/012004
Tareq, Z.-A., & Raja Yusof, R. J. (2024). Modeling a Problem-Solving Approach Through Computational Thinking for Teaching Programming. IEEE Transactions on Education, 67(2), 282 – 291. https://doi.org/10.1109/TE.2024.3354425
Tikva, C., & Tambouris, E. (2023). The effect of scaffolding programming games and attitudes towards programming on the development of Computational Thinking. Education and Information Technologies, 28(6), 6845 – 6867. https://doi.org/10.1007/s10639-022-11465-y
Wu, M. Q., Cieslik, V. V, Askari, S., Hadwin, A. F., & Hood, M. (2024). Measuring the Complexity of Self-Regulated Learning and Academic Challenges for Adolescents in Canada. Journal of Psychoeducational Assessment, 42(3), 293 – 307. https://doi.org/10.1177/07342829231221851
Yadav, S., & Chakraborty, P. (2023). Introducing schoolchildren to computational thinking using smartphone apps: A way to encourage enrollment in engineering education. Computer Applications in Engineering Education, 31(4), 831 – 849. https://doi.org/10.1002/cae.22609
Yan, J. (2024). An Empirical Study on Improving Mathematics Application Skills of Engineering Students Using MATLAB Tools. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns-2024-1342
Yan, W., Nakajima, T., & Sawada, R. (2024). Benefits and Challenges of Collaboration between Students and Conversational Generative Artificial Intelligence in Programming Learning: An Empirical Case Study. Education Sciences, 14(4). https://doi.org/10.3390/educsci14040433
Yanti, Y., Nur Kalifah, D. R., & Hidayah, N. (2024). Implementing Computational Thinking Skills in Socio Scientific Issue (SSI) of Force Material Around Us at Elementary School. In S. A., U. R., & R. A. (Eds.), E3S Web of Conferences (Vol. 482). EDP Sciences. https://doi.org/10.1051/e3sconf/202448204001
Yu, L., Han, L., Luo, Y., & Shang, J. (2024). Algorithm Implementation and Optimization of Symmetric Matrix Eigenvalue Solution for FT-M6678. Jisuanji Gongcheng/Computer Engineering, 50(2), 51 – 58. https://doi.org/10.19678/j.issn.1000-3428.0067536
Zhang, Y. G., Dang, M. Y., & Albritton, M. D. (2024). Delivering a Business Analytics Course Focused on Data Mining for Both Technical and Non-Technical Students. Journal of Information Systems Education, 35(1), 86 – 98. https://doi.org/10.62273/MWCG1518
Zulmaulida, R., & Saputra, E. (2023). Semiotics as a level critical thinking ability in quantum teaching. In R. R., G. S.M., J. A., N. A.B.D., S. A., & R. L.S. (Eds.), AIP Conference Proceedings (Vol. 2734, Issue 1). American Institute of Physics Inc. https://doi.org/10.1063/5.0155478
DOI: https://doi.org/10.33394/jk.v10i3.12415
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 The Author(s)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Kependidikan : Jurnal Hasil Penelitian dan Kajian Kepustakaan di Bidang Pendidikan, Pengajaran, dan Pembelajaran
E-ISSN: 2442-7667
Published by LPPM Universitas Pendidikan Mandalika
Email: [email protected]
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.