Instrument Response of the Indonesian People's Accelerograph (ARI) Type I Based on MEMS Sensor MPU6050
Abstract
The Indonesian People’s Accelerograph (ARI) is an innovative ground motion recording device developed using predominantly local, cost-effective components to accurately monitor and record seismic-induced ground acceleration for disaster mitigation. This study aimed to evaluate the instrument response of ARI Type I, which utilizes a MEMS sensor (MPU6050) to capture dynamic acceleration data crucial for earthquake early warning systems. The research involved a comprehensive methodology comprising hardware design, field testing, and in-depth analysis of the instrument’s response by determining key parameters such as gain, poles, and zeros under various seismic conditions. The hardware was meticulously designed using KiCAD, with the final assembly enclosed in a 3D-printed casing that integrates the ESP32 microcontroller, sensor, SD card, and LCD, while data communication was achieved via I2C and WiFi protocols, and time synchronization was maintained using NTP. Field tests conducted at the UNILA site demonstrated that ARI Type I records ground acceleration on all three axes at a density of 50 signals per second. Data retrieved and processed through Python into a DataFrame confirmed the system’s high sensitivity and reliability, with a measured gain of approximately 3637.48 V/g, poles of 1.39133434×10⁻⁸ and 9.10426934×10⁻², and zeros of –1.52128433×10⁻⁶ and –4.69561707×10³. These promising results validate the potential of ARI Type I as an effective tool for seismic monitoring, contributing to the development of robust early warning systems and enhancing disaster resilience in earthquake-prone regions.
Keywords
Full Text:
PDFReferences
Abdalzaher, M., Krichen, M., Yiltas-Kaplan, D., Dhaou, I., & Adoni, W. (2023). Early detection of earthquakes using IoT and cloud infrastructure: A survey. Sustainability, 15(15), 11713. https://doi.org/10.3390/su151511713
Afandi, A., & Ramadhani, K. (2023). Utilization of IoT technology for temperature monitoring system on STMik Royal Computer Laboratory. Jurteksi (Jurnal Teknologi dan Sistem Informasi), 9(3), 509–514. https://doi.org/10.33330/jurteksi.v9i3.2459
Bakir, R., Elksasy, M., Saraya, M., & Abdelsalam, M. (2023). Low cost MEMS accelerograph: Structure, operation and application to seismology. Delta University Scientific Journal, 6(1), 193–204. https://doi.org/10.21608/dusj.2023.291042
Bayupati, I., Ersapramana, A., & Dharmaadi, I. (2023). Design and build of masked face identification system and IoT-based body temperature measurement. International Journal on Advanced Science Engineering and Information Technology, 13(4), 1582–1588. https://doi.org/10.18517/ijaseit.13.4.17917
Fadillah, B., Putrada, A., & Abdurohman, M. (2022). A wearable device for enhancing basketball shooting correctness with MPU6050 sensors and support vector machine classification. Kinetik Game Technology Information System Computer Network Computing Electronics and Control. https://doi.org/10.22219/kinetik.v7i2.1435
Gunoro, G., Suprapto, S., Iriani, J., Sundawa, B., & Abdullah, A. (2023). Design of earthquake warning alarm using accelerometer sensor based on Internet of Things. International Journal of Research in Vocational Studies (IJRVOCAS), 3(1), 32–35. https://doi.org/10.53893/ijrvocas.v3i1.194
Hugeng, H., Khefin, K., & Wulandari, M. (2022). Design of automatic candy mixer using Blynk and NodeMCU ESP8266. Green Intelligent Systems and Applications, 2(1), 1–6. https://doi.org/10.53623/gisa.v2i1.59
Hutchings, S., & Mooney, W. (2021). The seismicity of Indonesia and tectonic implications. Geochemistry, Geophysics, Geosystems, 22(9). https://doi.org/10.1029/2021gc009812
Jousset, P., Currenti, G., Murphy, S., Eibl, E., Caudron, C., Retailleau, L., … & Krawczyk, C. (2024). Fiber optic sensing for volcano monitoring and imaging volcanic processes. https://doi.org/10.31223/x5hm6j
Karinia, Y., Violita, V., Tarigan, H., Sudiar, N., & Yulkifli, Y. (2021). Soil moisture measurement tools using SHT11 sensors based on the Internet of Things. Invotek Jurnal Inovasi Vokasional dan Teknologi, 21(3), 165–174. https://doi.org/10.24036/invotek.v21i3.928
Komarizadehasl, S., Lozano, F., Galant, J., Schneider, G., & Coderque, J. (2022). Low-cost wireless structural health monitoring of bridges. Sensors, 22(15), 5725. https://doi.org/10.3390/s22155725
Kong, Q., Allen, R., Schreier, L., & Kwon, Y. (2016). MyShake: A smartphone seismic network for earthquake early warning and beyond. Science Advances, 2(2). https://doi.org/10.1126/sciadv.1501055
Kurniawan, M., Wijaya, S., & Hanifa, N. (2023). Convolutional neural network for earthquake ground motion prediction model in earthquake early warning system in West Java. Jurnal Penelitian Pendidikan IPA, 9(11), 1004–1010. https://doi.org/10.29303/jppipa.v9i11.3514
Makrup, L., Pawirodikromo, W., & Muntafi, Y. (2024). Comparison of structural response utilizing probabilistic seismic hazard analysis and design spectral ground motion. Civil Engineering Journal, 10, 235–251. https://doi.org/10.28991/cej-sp2024-010-012
Nofiana, T., Asmuni, A., Cahyadi, C., Suzanti, W., & Islamawan, A. (2024). Comparative analysis of earthquake resistant building structure design planning using artificial intelligence and SAP2000 methods. Berkala Sainstek, 12(4), 184–190. https://doi.org/10.19184/bst.v12i4.53521
Ouldzira, H., Mouhsen, A., Lagraini, H., Chhiba, M., Tabyaoui, A., & Amrane, S. (2019). Remote monitoring of an object using a wireless sensor network based on NodeMCU ESP8266. Indonesian Journal of Electrical Engineering and Computer Science, 16(3), 1154–1162. https://doi.org/10.11591/ijeecs.v16.i3.pp1154-1162
Pramana, I., & Fitri, S. (2024). The decrease of the bearing capacity of single pile foundation during earthquake on liquefiable soil (case study: Birobuli area, South Palu). IOP Conference Series: Earth and Environmental Science, 1314(1), 012113. https://doi.org/10.1088/1755-1315/1314/1/012113
Pramono, S., Utama, M., Swastikarani, R., Sabtaji, A., Wijaya, A., Utomo, F., … & Karnawati, D. (2023). Implementation early design of prototype EEWS development in Indonesia. https://doi.org/10.21203/rs.3.rs-2774584/v1
Schiavi, A., Fort, A., Landi, E., Mugnaini, M., Vignoli, V., Prato, A., … & Murgia, M. (2022). Calibration of a multicomponent MEMS sensor for vibration monitoring of rolling bearings: Broad-band and amplitude traceability up to 20 kHz. https://doi.org/10.1109/metroind4.0iot54413.2022.9831590
Syamsi, M., Maulana, T., Widyantama, H., Ian, M., & Lesmana, R. (2021). Comparative study of Indonesian seismic codes applied on vertically irregular RC building in high seismicity region. International Journal of Integrated Engineering, 13(3). https://doi.org/10.30880/ijie.2021.13.03.019
Tanırcan, G., Alçık, H., & Beyen, K. (2018). Reliability of MEMS accelerometers for instrumental intensity mapping of earthquakes. Annals of Geophysics, 60(6 Suppl.). https://doi.org/10.4401/ag-7501
Triyoso, W., Suwondo, A., Yudistira, T., & Sahara, D. (2020). Seismic hazard function (SHF) study of coastal sources of Sumatra Island: SHF evaluation of Padang and Bengkulu cities. Geoscience Letters, 7(1). https://doi.org/10.1186/s40562-020-00151-x
Won, J., Park, J., Park, J., & Kim, I. (2020). Bleseis: Low-cost IoT sensor for smart earthquake detection and notification. Sensors, 20(10), 2963. https://doi.org/10.3390/s20102963
DOI: https://doi.org/10.33394/j-ps.v13i2.15206
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rafi Syah Akram, Adji Satrio, Bayu Sutejo, Agustya Adi Martha, Handi Sulistyo Widodo, Hapsoro Agung Nugroho, Tio Azhar Prakoso, Nurul Hudayat

This work is licensed under a Creative Commons Attribution 4.0 International License.
J-PS (Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram) p-ISSN (print) 2338-4530, e-ISSN (online) 2540-7899 is licensed under a Creative Commons Attribution 4.0 International License.