Identification of Promising Glyphosate-Degrading Bacteria Isolated from the Rhizosphere of Local Chili Pepper Plantation

Lisa Lisdiana, Khilma Ziyadatur Rizka Maulida, Ratih Khairul Anissa, Anggi Maulia Arista

Abstract


The glyphosate’s continuous application in agricultural fields has caused adverse environmental effects. Utilizing indigenous microorganisms as glyphosate-degrading agents can be an effective and eco-friendly solution. Isolate Cf2, obtained from a local chili pepper plantation in Indonesia, grew as a co-dominant isolate in media with 50 ppm glyphosate, indicating its potential as glyphosate-degrading bacteria. However, this isolate cannot be applied yet because it has not been identified. Identification can provide initial insights into the safety of indigenous isolates for ecological application. Thus, this study aims to identify isolate Cf2 by utilizing the 16s rRNA gene sequence as the genetic marker. The data was compared to the database using the web-based BLAST2 program (version 2.13.0). Then, the evolutionary relationship of this isolate with its closest relatives was assessed through phylogenetic tree reconstruction. The results demonstrate that the isolate Cf2 has a sequence similarity of 98.88% with Bacillus subtilis. The phylogenetic tree reconstruction further indicates that isolate Cf2 forms a monophyletic clade with this species. Hence, it can be concluded that isolate Cf2 is indeed B. subtilis. This study is the first report of glyphosate-degrading B. subtilis isolated from chili pepper plantations in Indonesia, offering a new insight into bioremediation strategies.

Keywords


B. subtilis; glyphosate; biodegradation; species; 16s rRNA gene

Full Text:

PDF

References


Abaza, S. (2020). What is and why do we have to know the phylogenetic tree? Parasitologists United Journal, 13(2), 68–71. https://doi.org/10.21608/puj.2020.35843.1082

Adelskov, J., & Patel, B. K. C. (2016). A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor. 3 Biotech, 6(1). https://doi.org/10.1007/s13205-016-0408-8

Andriani, L. T., Aini, L. Q., & Hadiastono, T. (2017). Glyphosate biodegradation by plant growth promoting bacteria and their effect to paddy germination in glyphosate contaminated soil. Journal of Degraded and Mining Lands Management, 05(01), 995–1000. https://doi.org/10.15243/jdmlm.2017.051.995

Badani, H., Djadoun, F., & Haddad, F. Z. (2023). Effects of the herbicide glyphosate [n-(phosphonomethyl) glycine] on biodiversity and organisms in the soil-A review. European Journal of Environmental Sciences, 13(1), 5–15. https://doi.org/10.14712/23361964.2023.1

Bukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., & Zemskaya, T. I. (2019). The effect of 16s rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6. https://doi.org/10.1038/sdata.2019.7

Dunlap, C. A., Bowman, M. J., & Zeigler, D. R. (2020). Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 113(1), 1–12. https://doi.org/10.1007/s10482-019-01354-9

Ermakova, I. T., Shushkova, T. V., & Leont’evskii, A. A. (2008). Microbial degradation of organophosphonates by soil bacteria. Microbiology, 77(5), 615–620. https://doi.org/10.1134/S0026261708050160

Fan, J., Yang, G., Zhao, H., Shi, G., Geng, Y., Hou, T., & Tao, K. (2012). Isolation, identification, and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J. Gen. Appl. Microbiol., 58, 263–271. https://doi.org/10.2323/jgam.58.263

Feng, D., Malleret, L., Chiavassa, G., Boutin, O., & Soric, A. (2020). Biodegradation capabilities of acclimated activated sludge towards glyphosate: Experimental study and kinetic modeling. Biochemical Engineering Journal, 161. https://doi.org/10.1016/j.bej.2020.107643

Firdous, S., Iqbal, S., & Anwar, S. (2020). Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere, 30(5), 618–627. https://doi.org/10.1016/S1002-0160(17)60381-3

Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012

Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., Butterfield, C. N., Hernsdorf, A. W., Amano, Y., Ise, K., Suzuki, Y., Dudek, N., Relman, D. A., Finstad, K. M., Amundson, R., Thomas, B. C., & Banfield, J. F. (2016). A new view of the tree of life. Nature Microbiology, 1(5). https://doi.org/10.1038/nmicrobiol.2016.48

Ibrahim, N. E., Sevakumaran, V., & Ariffin, F. (2023). Preliminary study on glyphosate-degrading bacteria isolated from agricultural soil. Environmental Advances, 12. https://doi.org/10.1016/j.envadv.2023.100368

Kryuchkova, Y. V., Burygin, G. L., Gogoleva, N. E., Gogolev, Y. V., Chernyshova, M. P., Makarov, O. E., Fedorov, E. E., & Turkovskaya, O. V. (2014). Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiological Research, 169(1), 99–105. https://doi.org/10.1016/j.micres.2013.03.002

Kulikova, N. A., Zhelezova, A. D., Filippova, O. I., Plyushchenko, I. V., & Rodin, I. A. (2020). The degradation of glyphosate and its effect on the microbial community of Agro-Sod–Podzolic soil under short-term model experiment conditions. Moscow University Soil Science Bulletin, 75(3), 138–145. https://doi.org/10.3103/s0147687420030035

Maggi, F., la Cecilia, D., Tang, F. H. M., & McBratney, A. (2020). The global environmental hazard of glyphosate use. Science of the Total Environment, 717. https://doi.org/10.1016/j.scitotenv.2020.137167

Manogaran, M., Adeela Yasid, N., & Aqlima Ahmad, S. (2017). Mathematical modelling of glyphosate degradation rate by Bacillus subtilis. In JOBIMB (Vol. 5, Issue 1). http://journal.hibiscuspublisher.com/index.php/JOBIMB/index

Manogaran, M., Shukor, M. Y., Yasid, N. A., Johari, W. L. W., & Ahmad, S. A. (2017). Isolation and characterization of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei, 28(3), 471–479. https://doi.org/10.1007/s12210-017-0620-4

Maughan, H., & Van der Auwera, G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. In Infection, Genetics and Evolution (Vol. 11, Issue 5, pp. 789–797). https://doi.org/10.1016/j.meegid.2011.02.001

Maulida, K. Z. R., & Lisdiana, L. (2024). Identifikasi secara fenotipik dan genomik isolat bakteri potensial pendegradasi herbisida glifosat dari rhizosfer cabai rawit. LenteraBio, 13(2), 253–261. https://doi.org/https://doi.org/10.26740/lenterabio.v13n2.p253-261

Nguyen, N. T., Vo, V. T., Nguyen, T. H. P., & Kiefer, R. (2022). Isolation and optimization of a glyphosate-degrading Rhodococcus soli G41 for bioremediation. Archives of Microbiology, 204(5). https://doi.org/10.1007/s00203-022-02875-0

Nikmah, A. L., & Lisdiana, L. (2024). Penapisan bakteri rizosfer pendegradasi herbisida glifosat dari tanah pertanian cabai rawit (Capsicum frutescent L.) screening of glyphosate herbicide-degrading rhizosphere bacteria from chili pepper (Capsicum frutescent L.) farm soil. LenteraBio, 13(1), 24–31. https://doi.org/https://doi.org/10.26740/lenterabio.v13n1.p24-31

Pileggi, M., Pileggi, S. A. V., & Sadowsky, M. J. (2020). Herbicide bioremediation: from strains to bacterial communities. In Heliyon (Vol. 6, Issue 12). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2020.e05767

Pollegioni, L., Schonbrunn, E., & Siehl, D. (2011). Molecular basis of glyphosate resistance - different approaches through protein engineering. In FEBS Journal (Vol. 278, Issue 16, pp. 2753–2766). https://doi.org/10.1111/j.1742-4658.2011.08214.x

Rossi, F., Carles, L., Donnadieu, F., Batisson, I., & Artigas, J. (2021). Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. Journal of Hazardous Materials, 420. https://doi.org/10.1016/j.jhazmat.2021.126651

Rusnam, Rahman, M. F., Khayat, M. E., Nasution, F. I., Umar, A. M., & Yakasai, H. M. (2023). Characterisation of a Bacillus sp. isolated from soils near lake Maninjau capable of degrading glyphosate. Journal of Environmental Microbiology and Toxicology, 11(1), 69–76. https://doi.org/10.54987/jemat.v11i1.886

Singh, B., & Singh, K. (2017). Bacillus: As bioremediator agent of major environmental pollutants. In Bacilli and Agrobiotechnology (pp. 35–55). Springer International Publishing. https://doi.org/10.1007/978-3-319-44409-3_2

Sun, M., Li, H., & Jaisi, D. P. (2019). Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water Research, 163. https://doi.org/10.1016/j.watres.2019.07.007

Xu, X., Nielsen, L. J. D., Song, L., Maróti, G., Strube, M. L., & Kovács, Á. T. (2023). Enhanced specificity of Bacillus metataxonomics using a tuf -targeted amplicon sequencing approach. ISME Communications, 3(1). https://doi.org/10.1038/s43705-023-00330-9

Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K. H., Whitman, W. B., Euzéby, J., Amann, R., & Rosselló-Móra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635–645. https://doi.org/10.1038/nrmicro3330

Yu, X. M., Yu, T., Yin, G. H., Dong, Q. L., An, M., Wang, H. R., & Ai, C. X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genetics and Molecular Research, 14(4), 14717–14730. https://doi.org/10.4238/2015.November.18.37

Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. In Applied Microbiology and Biotechnology (Vol. 102, Issue 12, pp. 5033–5043). Springer Verlag. https://doi.org/10.1007/s00253-018-9035-0

Zhang, L., Rana, I., Shaffer, R. M., Taioli, E., & Sheppard, L. (2019). Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. In Mutation Research - Reviews in Mutation Research (Vol. 781, pp. 186–206). Elsevier B.V. https://doi.org/10.1016/j.mrrev.2019.02.001

Zhang, Q., Li, Y., Kroeze, C., Xu, W., Gai, L., Vitsas, M., Ma, L., Zhang, F., & Strokal, M. (2024). A global assessment of glyphosate and AMPA inputs into rivers: Over half of the pollutants are from corn and soybean production. Water Research, 261. https://doi.org/10.1016/j.watres.2024.121986

Zhang, W., Li, J., Zhang, Y., Wu, X., Zhou, Z., Huang, Y., Zhao, Y., Mishra, S., Bhatt, P., & Chen, S. (2022). Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. Journal of Hazardous Materials, 432. https://doi.org/10.1016/j.jhazmat.2022.128689

Zhao, H., Tao, K., Zhu, J., Liu, S., Gao, H., & Zhou, X. (2015). Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. Journal of General and Applied Microbiology, 61(5), 165–170. https://doi.org/10.2323/jgam.61.165




DOI: https://doi.org/10.33394/j-ps.v13i1.14449

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Lisa Lisdiana, Khilma Ziyadatur Rizka Maulida, Ratih Khairul Anissa, Anggi Maulia Arista

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License
J-PS (Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram) p-ISSN (print) 2338-4530, e-ISSN (online) 2540-7899 is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats