Identification of Promising Glyphosate-Degrading Bacteria Isolated from the Rhizosphere of Local Chili Pepper Plantation
Abstract
Keywords
Full Text:
PDFReferences
Abaza, S. (2020). What is and why do we have to know the phylogenetic tree? Parasitologists United Journal, 13(2), 68–71. https://doi.org/10.21608/puj.2020.35843.1082
Adelskov, J., & Patel, B. K. C. (2016). A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor. 3 Biotech, 6(1). https://doi.org/10.1007/s13205-016-0408-8
Andriani, L. T., Aini, L. Q., & Hadiastono, T. (2017). Glyphosate biodegradation by plant growth promoting bacteria and their effect to paddy germination in glyphosate contaminated soil. Journal of Degraded and Mining Lands Management, 05(01), 995–1000. https://doi.org/10.15243/jdmlm.2017.051.995
Badani, H., Djadoun, F., & Haddad, F. Z. (2023). Effects of the herbicide glyphosate [n-(phosphonomethyl) glycine] on biodiversity and organisms in the soil-A review. European Journal of Environmental Sciences, 13(1), 5–15. https://doi.org/10.14712/23361964.2023.1
Bukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., & Zemskaya, T. I. (2019). The effect of 16s rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6. https://doi.org/10.1038/sdata.2019.7
Dunlap, C. A., Bowman, M. J., & Zeigler, D. R. (2020). Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 113(1), 1–12. https://doi.org/10.1007/s10482-019-01354-9
Ermakova, I. T., Shushkova, T. V., & Leont’evskii, A. A. (2008). Microbial degradation of organophosphonates by soil bacteria. Microbiology, 77(5), 615–620. https://doi.org/10.1134/S0026261708050160
Fan, J., Yang, G., Zhao, H., Shi, G., Geng, Y., Hou, T., & Tao, K. (2012). Isolation, identification, and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J. Gen. Appl. Microbiol., 58, 263–271. https://doi.org/10.2323/jgam.58.263
Feng, D., Malleret, L., Chiavassa, G., Boutin, O., & Soric, A. (2020). Biodegradation capabilities of acclimated activated sludge towards glyphosate: Experimental study and kinetic modeling. Biochemical Engineering Journal, 161. https://doi.org/10.1016/j.bej.2020.107643
Firdous, S., Iqbal, S., & Anwar, S. (2020). Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere, 30(5), 618–627. https://doi.org/10.1016/S1002-0160(17)60381-3
Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012
Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., Butterfield, C. N., Hernsdorf, A. W., Amano, Y., Ise, K., Suzuki, Y., Dudek, N., Relman, D. A., Finstad, K. M., Amundson, R., Thomas, B. C., & Banfield, J. F. (2016). A new view of the tree of life. Nature Microbiology, 1(5). https://doi.org/10.1038/nmicrobiol.2016.48
Ibrahim, N. E., Sevakumaran, V., & Ariffin, F. (2023). Preliminary study on glyphosate-degrading bacteria isolated from agricultural soil. Environmental Advances, 12. https://doi.org/10.1016/j.envadv.2023.100368
Kryuchkova, Y. V., Burygin, G. L., Gogoleva, N. E., Gogolev, Y. V., Chernyshova, M. P., Makarov, O. E., Fedorov, E. E., & Turkovskaya, O. V. (2014). Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiological Research, 169(1), 99–105. https://doi.org/10.1016/j.micres.2013.03.002
Kulikova, N. A., Zhelezova, A. D., Filippova, O. I., Plyushchenko, I. V., & Rodin, I. A. (2020). The degradation of glyphosate and its effect on the microbial community of Agro-Sod–Podzolic soil under short-term model experiment conditions. Moscow University Soil Science Bulletin, 75(3), 138–145. https://doi.org/10.3103/s0147687420030035
Maggi, F., la Cecilia, D., Tang, F. H. M., & McBratney, A. (2020). The global environmental hazard of glyphosate use. Science of the Total Environment, 717. https://doi.org/10.1016/j.scitotenv.2020.137167
Manogaran, M., Adeela Yasid, N., & Aqlima Ahmad, S. (2017). Mathematical modelling of glyphosate degradation rate by Bacillus subtilis. In JOBIMB (Vol. 5, Issue 1). http://journal.hibiscuspublisher.com/index.php/JOBIMB/index
Manogaran, M., Shukor, M. Y., Yasid, N. A., Johari, W. L. W., & Ahmad, S. A. (2017). Isolation and characterization of glyphosate-degrading bacteria isolated from local soils in Malaysia. Rendiconti Lincei, 28(3), 471–479. https://doi.org/10.1007/s12210-017-0620-4
Maughan, H., & Van der Auwera, G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. In Infection, Genetics and Evolution (Vol. 11, Issue 5, pp. 789–797). https://doi.org/10.1016/j.meegid.2011.02.001
Maulida, K. Z. R., & Lisdiana, L. (2024). Identifikasi secara fenotipik dan genomik isolat bakteri potensial pendegradasi herbisida glifosat dari rhizosfer cabai rawit. LenteraBio, 13(2), 253–261. https://doi.org/https://doi.org/10.26740/lenterabio.v13n2.p253-261
Nguyen, N. T., Vo, V. T., Nguyen, T. H. P., & Kiefer, R. (2022). Isolation and optimization of a glyphosate-degrading Rhodococcus soli G41 for bioremediation. Archives of Microbiology, 204(5). https://doi.org/10.1007/s00203-022-02875-0
Nikmah, A. L., & Lisdiana, L. (2024). Penapisan bakteri rizosfer pendegradasi herbisida glifosat dari tanah pertanian cabai rawit (Capsicum frutescent L.) screening of glyphosate herbicide-degrading rhizosphere bacteria from chili pepper (Capsicum frutescent L.) farm soil. LenteraBio, 13(1), 24–31. https://doi.org/https://doi.org/10.26740/lenterabio.v13n1.p24-31
Pileggi, M., Pileggi, S. A. V., & Sadowsky, M. J. (2020). Herbicide bioremediation: from strains to bacterial communities. In Heliyon (Vol. 6, Issue 12). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2020.e05767
Pollegioni, L., Schonbrunn, E., & Siehl, D. (2011). Molecular basis of glyphosate resistance - different approaches through protein engineering. In FEBS Journal (Vol. 278, Issue 16, pp. 2753–2766). https://doi.org/10.1111/j.1742-4658.2011.08214.x
Rossi, F., Carles, L., Donnadieu, F., Batisson, I., & Artigas, J. (2021). Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. Journal of Hazardous Materials, 420. https://doi.org/10.1016/j.jhazmat.2021.126651
Rusnam, Rahman, M. F., Khayat, M. E., Nasution, F. I., Umar, A. M., & Yakasai, H. M. (2023). Characterisation of a Bacillus sp. isolated from soils near lake Maninjau capable of degrading glyphosate. Journal of Environmental Microbiology and Toxicology, 11(1), 69–76. https://doi.org/10.54987/jemat.v11i1.886
Singh, B., & Singh, K. (2017). Bacillus: As bioremediator agent of major environmental pollutants. In Bacilli and Agrobiotechnology (pp. 35–55). Springer International Publishing. https://doi.org/10.1007/978-3-319-44409-3_2
Sun, M., Li, H., & Jaisi, D. P. (2019). Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water Research, 163. https://doi.org/10.1016/j.watres.2019.07.007
Xu, X., Nielsen, L. J. D., Song, L., Maróti, G., Strube, M. L., & Kovács, Á. T. (2023). Enhanced specificity of Bacillus metataxonomics using a tuf -targeted amplicon sequencing approach. ISME Communications, 3(1). https://doi.org/10.1038/s43705-023-00330-9
Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K. H., Whitman, W. B., Euzéby, J., Amann, R., & Rosselló-Móra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635–645. https://doi.org/10.1038/nrmicro3330
Yu, X. M., Yu, T., Yin, G. H., Dong, Q. L., An, M., Wang, H. R., & Ai, C. X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genetics and Molecular Research, 14(4), 14717–14730. https://doi.org/10.4238/2015.November.18.37
Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. In Applied Microbiology and Biotechnology (Vol. 102, Issue 12, pp. 5033–5043). Springer Verlag. https://doi.org/10.1007/s00253-018-9035-0
Zhang, L., Rana, I., Shaffer, R. M., Taioli, E., & Sheppard, L. (2019). Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. In Mutation Research - Reviews in Mutation Research (Vol. 781, pp. 186–206). Elsevier B.V. https://doi.org/10.1016/j.mrrev.2019.02.001
Zhang, Q., Li, Y., Kroeze, C., Xu, W., Gai, L., Vitsas, M., Ma, L., Zhang, F., & Strokal, M. (2024). A global assessment of glyphosate and AMPA inputs into rivers: Over half of the pollutants are from corn and soybean production. Water Research, 261. https://doi.org/10.1016/j.watres.2024.121986
Zhang, W., Li, J., Zhang, Y., Wu, X., Zhou, Z., Huang, Y., Zhao, Y., Mishra, S., Bhatt, P., & Chen, S. (2022). Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. Journal of Hazardous Materials, 432. https://doi.org/10.1016/j.jhazmat.2022.128689
Zhao, H., Tao, K., Zhu, J., Liu, S., Gao, H., & Zhou, X. (2015). Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. Journal of General and Applied Microbiology, 61(5), 165–170. https://doi.org/10.2323/jgam.61.165
DOI: https://doi.org/10.33394/j-ps.v13i1.14449
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Lisa Lisdiana, Khilma Ziyadatur Rizka Maulida, Ratih Khairul Anissa, Anggi Maulia Arista

This work is licensed under a Creative Commons Attribution 4.0 International License.
J-PS (Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram) p-ISSN (print) 2338-4530, e-ISSN (online) 2540-7899 is licensed under a Creative Commons Attribution 4.0 International License.