Characterization of Activated Carbon from Mangosteen Peel (Garcinia Mangostana L.) Activated with Phosphoric Acid (H3PO4)

Erwin Riski Indrastika, Nasrul Rofiah Hidayati, Ade Trisnawati

Abstract


Mangosteen peel (Garcinia Mangostana L.) represents a waste that has yet to find widespread application. One effort to increase the economic value of mangosteen rind is by processing mangosteen rind into active carbon, which can be used in various industrial processes. This research will examine the manufacture of activated carbon using mangosteen peel as raw material, which is washed clean, cut, and dried, then carbonized using a furnace at a temperature of 250 0C for 1 hour. Activating activated carbon from mangosteen peel is carried out by immersion in a 5 M concentration of phosphoric acid (H₃PO₄). Next, the characteristics of activated carbon from mangosteen peel are examined, including water content, ash content, volatile matter content, and pure carbon content. The study shows that activated carbon meets the SNI-06-3730-1995 standards for its water content (2.76%), ash content (7.24%), volatile matter content (6.02%), and pure carbon content (83.98%).

Keywords


activated carbon, phosphoric acid, mangosteen peel, characterization

Full Text:

PDF

References


Alongamo, B. A. A., Ajifack, L. D., Ghogomu, J. N., Nsami, N. J., & Ketcha, J. M. (2021). Activated Carbon from the Peelings of Cassava Tubers (Manihot esculenta) for the Removal of Nickel(II) Ions from Aqueous Solution. Journal of Chemistry, 2021. https://doi.org/10.1155/2021/5545110

Batu, M. S., Naes, E., & Kolo, M. M. (2022). Pembuatan Karbon Aktif dari Limbah Sabut Pinang Asal Pulau Timor sebagai Biosorben Logam Ca dan Mg dalam Air Tanah. Jurnal Integrasi Proses, 11(1), 21. https://doi.org/10.36055/jip.v11i1.13181

Efendi, E. A., Djatmiko, F. P., & Kurniati, E. (2024). Indonesian Journal of Chemical Science Synthesis and Characterization of Activated Carbon from Green Banana Peel. 13(3).

Ekawati, C. J. K. (2023). Alternatif Bahan Baku Arang Aktif.

Ferreira, L. M., de Melo, R. R., Pimenta, A. S., de Azevedo, T. K. B., & de Souza, C. B. (2022). Adsorption performance of activated charcoal from castor seed cake prepared by chemical activation with phosphoric acid. Biomass Conversion and Biorefinery, 12(4), 1181–1192. https://doi.org/10.1007/s13399-020-00660-x

Hanami, Z. A., & Lestari, P. (2021). Characterization and application of mangosteen peel activated carbon for ammonia gas removal. Environment and Natural Resources Journal, 19(4), 320–329. https://doi.org/10.32526/ennrj/19/2020298

Hastuti, N., Pari, G., Setiawan, D., Daud, & Godang, M. (2015). Tingkat Keasaman Dan Kebasaan Arang Aktif Bambu Mayan (Aabm) Terhadap Uap Jenuh Hcl Dan Naoh Acidity and Alkalinity Level of Mayan Bamboo Activated Charcoal (Mbac) on Saturated Vapor of Acid Chloride and Natrium Hydroxide. Widyariset, 1(December), 41–50. https://doi.org/10.14203/widyariset.1.1.2015.

Haura, Ulfa., Razi, Fachrul., & Meilina, H. (2017). Karakterisasi Adsorben dari Kulit Manggis dan Kinerjanya Pada Adsorpsi Logam Pb (II) dan Cr (VI). Biopropal Industri, 8(1), 47–54.

Hydhayat, Y. W., Rifai, M. A. S. A., & Sani, S. (2022). Karbon Aktif Dari Limbah Daun Jati Menggunakan Aktivator Larutan Koh. Jurnal Teknik Kimia, 16(2), 87–92. https://doi.org/10.33005/jurnal_tekkim.v16i2.3050

Jaya, D. D., & Khair, M. (2020). Pembuatan Karbon Aktif Melalui Karbonisasi Batang Kelapa Sawit. Chemistry Journal of State University of Padang, 9(1), 7–10.

Khajonrit, J., Sichumsaeng, T., Kalawa, O., Chaisit, S., Chinnakorn, A., Chanlek, N., & Maensiri, S. (2022). Mangosteen peel-derived activated carbon for supercapacitors. Progress in Natural Science: Materials International, 32(5), 570–578. https://doi.org/10.1016/j.pnsc.2022.09.004

Manurung, M., Ratnayani, O., & Prawira, R. A. (2019). Sintesis dan karakterisasi arang dari limbah bambu dengan aktivator ZnCl2. Cakra Kimia (Indonesian E-Journal of Applied Chemistry), 7(1), 69–77.

Maulina, S., & Iriansyah, M. (2018). Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder. IOP Conference Series: Materials Science and Engineering, 309(1). https://doi.org/10.1088/1757-899X/309/1/012072

Meilianti, M. (2020). Pembuatan Karbon Aktif dari Arang Tongkol Jagung dengan Variasi Konsentrasi Aktivator Natrium Karbonat (Na2CO3). Jurnal Distilasi, 5(1), 14. https://doi.org/10.32502/jd.v5i1.3025

Muhali, M., Hendrawani, H., Mirawati, B., & Hulyadi, H. (2023). Effectiveness of Activated Carbon CaCl2 and NaNO3 Reducing Fatty Acids and Increasing the Quantity of Biodiesel Production. Jurnal Penelitian Pendidikan IPA, 9(1), Article 1. https://doi.org/10.29303/jppipa.v9i1.2624

Neme, I., Gonfa, G., & Masi, C. (2022). Preparation and characterization of activated carbon from castor seed hull by chemical activation with H3PO4. Results in Materials, 15(July). https://doi.org/10.1016/j.rinma.2022.100304

Neneng Purnamawati. (2023). Uji Kualitas Sintesis Karbon Aktif Dari Pelepah Aren Teraktivasi Asam Fosfat. Journal of Research and Education Chemistry, 5(2), 120. https://doi.org/10.25299/jrec.2023.vol5(2).15225

Nurhasanah, A., Supriatna, A. M., & Rizka, F. (2024). Sintesis Karbon Aktif dari Kulit Manggis ( Garcina Mangostana ) dengan Aktivator Kalium Hidroksida ( KOH ) sebagai Adsorben untuk Reduksi Biological Oxygen Demand ( BOD ) dan Chemical Oxygen Demand ( COD ) pada Limbah Cair Industri Tahu. Aplikasi Kimia Material Untuk Kehidupan Masa Kini Dan Masa Depan, 112–121.

Ramayana, D; Royani, I;, Arsyad, F. S. (2017). Pembuatan Carbon Black Berbasis Nanoserbuk Tempurung Biji Karet Menggunakan High Energy Miling. Jurnal MIPA, 40(1), 20–23.

Rangabhashiyam, S & Balasubramanian, P. (2019). The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application—A review. Industrial Crops and Products, 128, 405–423. https://doi.org/10.1016/J.INDCROP.2018.11.041

Sholikhah, H. I., Putri, H. R., & Inayati, I. (2021). Pengaruh Konsentrasi Aktivator Asam Fosfat (H3PO4) pada Pembuatan Karbon Aktif dari Sabut Kelapa terhadap Adsorpsi Logam Kromium. Equilibrium Journal of Chemical Engineering, 5(1), 45. https://doi.org/10.20961/equilibrium.v5i1.53572

Smith, D. J., Pettit, P., & Schofield, T. (1996). Activated carbon in water treatment. Water Supply, 14(2), 85–98.




DOI: https://doi.org/10.33394/hjkk.v13i1.14557

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.