Optimization of Extraction Parameters for Phenolics and Flavonoids from Peony (Paeonia lactiflora) Flowers Using Ultrasound-Assisted Extraction
Abstract
Peony (Paeonia lactiflora) flowers, celebrated for their aesthetic and bioactive attributes, possess potential as natural antioxidant sources owing to their elevated phenolic and flavonoid concentrations. This study employed ultrasound-assisted extraction (UAE) and response surface methodology (RSM) to optimize the extraction parameters for phenolic and flavonoid compounds. The Box-Behnken Design using method Ultrasoud Assisted Extraction determined the optimal extraction parameters of Paeonia lactiflora flowers to be 49% ethanol concentration, a liquid-to-solid ratio of 50 mL/g, and an extraction time of 22 minutes. The parameters yielded a total phenolic content (TPC) of 205.463 mg GAE/g DW and a total flavonoid content (TFC) of 95.465 mg QE/g DW. The results underscore the significance of the liquid-to-solid ratio as a critical factor in extraction efficiency, while ethanol concentration and extraction duration exhibited considerable interactive effects. The findings confirm the efficacy of UAE as a sustainable and efficient technique for extracting bioactive components from Paeonia lactiflora, indicating its potential use in pharmaceuticals and nutraceuticals. Future research should explore the antioxidant activity and IC50 values of these extracts for expanded therapeutic use.
Keywords
Full Text:
PDFReferences
Akmal, T., Tanjung, Y. P., Julianti, A. I., & Lestari, A. G. (2024). Influence of extraction method on total phenolic content and antioxidant activity of Sappan Wood (Caesalpinia sappan L.) extract. Sasambo Journal of Pharmacy, 5(2), 55–62.
Almusallam, I. A., Mohamed Ahmed, I. A., Babiker, E. E., Al Juhaimi, F. Y., Fadimu, G. J., Osman, M. A., Al Maiman, S. A., Ghafoor, K., & Alqah, H. A. S. (2021). Optimization of ultrasound-assisted extraction of bioactive properties from date palm (Phoenix dactylifera L.) spikelets using response surface methodology. Lwt, 140(October 2020), 110816. https://doi.org/10.1016/j.lwt.2020.110816
Andres, A. I., Petron, M. J., Lopez, A. M., & Timon, M. L. (2020). Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers’ spent grain using response surface methodology (rsm). Foods, 9(10), 1–13. https://doi.org/10.3390/foods9101398
Arifin, B., & Ibrahim, S. (2018). Struktur, Bioaktivitas Dan Antioksidan Flavonoid. Jurnal Zarah, 6(1), 21–29. https://doi.org/10.31629/zarah.v6i1.313
Athanasiadis, V., Chatzimitakos, T., Bozinou, E., Kotsou, K., Palaiogiannis, D., & Lalas, S. I. (2023). Optimization of Extraction Parameters for Enhanced Recovery of Bioactive Compounds from Quince Peels Using Response Surface Methodology. Foods, 12(11). https://doi.org/10.3390/foods12112099
Azharini, R., Widyasanti, A., & Nurhasanah, S. (2022). Optimasi Proses Ekstraksi Bunga Telang (Clitoria ternatea) Berbantu Gelombang Mikro Menggunakan Aplikasi Response Surface Methodology. Jurnal Teknologi Dan Industri Pertanian Indonesia, 14(2), 97–102. https://doi.org/10.17969/jtipi.v14i2.23462
Azizah, D. N., Kumolowati, E., & Faramayuda, F. (2014). Penetapan Kadar Flavonoid Metode AlCl3 Pada Ekstrak Metanol Kulit Buah Kakao (Theobroma cacao L.). Kartika Jurnal Ilmiah Farmasi, 2(2), 45–49. https://doi.org/10.26874/kjif.v2i2.14
Baek, S., Bae, J., Miao, Y., Kim, G., Ryu, B., Lee, B., & Lee, S. (2024). Optimized Extraction of Sargahydroquinoic Acid , Major Bioactive Substance , from Sargassum yezoense Using Response Surface Methodology. 1–12.
Bayani, F., Kurniasari, B. A., Hamdani, A. S., Yuliana, D., Wahyuni, I., & Mujaddid, J. (2023). Identification of Secondary Metabolite Compounds from Melandean (Bridelian micrantha) Leaf Extract. Hydrogen: Jurnal Kependidikan Kimia, 11(6), 858–873. https://doi.org/10.33394/hjkk.v11i6.9879
Bayani, F., Muhali, M., Yuliana, D., Hulyadi, H., & Gargazi, G. (2024). Review of Secondary Metabolites From Melandean Bark Extract (Bridellia Micrantha): Bioactive Potential and Applications in Health. Hydrogen: Jurnal Kependidikan Kimia, 12(3), 413–428. https://doi.org/10.33394/hjkk.v12i3.11956
Bayani, F., Rosmayanti, B., Hamdani, A. S., & ... (2024). Identification of Antioxidant Activity of Bridelia Micrantha Bark Using the DPPH Method. Hydrogen: Jurnal …, 12(April).
Cheila, C. B., dos Anjos, G. L., Nóbrega, R. S. A., da S. Magaton, A., de Miranda, F. M., & de S. Dias, F. (2020). Greener ultrasound-assisted extraction of bioactive phenolic compounds in Croton heliotropiifolius Kunth leaves. Microchemical Journal, 159(June). https://doi.org/10.1016/j.microc.2020.105525
Chen, N. H., & Wei, S. (2017). Factors influencing consumers’ attitudes towards the consumption of edible flowers. Food Quality and Preference, 56, 93–100. https://doi.org/10.1016/j.foodqual.2016.10.001
Čutović, N., Marković, T., Kostić, M., Gašić, U., Prijić, Ž., Ren, X., Lukić, M., & Bugarski, B. (2022). Chemical Profile and Skin-Beneficial Activities of the Petal Extracts of Paeonia tenuifolia L. from Serbia. Pharmaceuticals, 15(12). https://doi.org/10.3390/ph15121537
Diantoro, A., Arum, M. S., Mualimin, L., & Setyawijayanto, D. (2022). Optimasi Ekstraksi Metode Microwave Assisted Extraction (Mae) Pada Sarang Semut (Myrmecodia Pendans). Jurnal Pangan Dan Agroindustri, 10(4), 240–248. https://doi.org/10.21776/ub.jpa.2022.010.04.7
Fadimu, G. J., Ghafoor, K., Babiker, E. E., Al-Juhaimi, F., Abdulraheem, R. A., & Adenekan, M. K. (2020). Ultrasound-assisted process for optimal recovery of phenolic compounds from watermelon (Citrullus lanatus) seed and peel. Journal of Food Measurement and Characterization, 14(3), 1784–1793. https://doi.org/10.1007/s11694-020-00426-z
Fibonacci, A., & Hulyadi, H. (2018). Uji Aktivitas Antimikroba Daun Sirsak (Annona muricata L.) Terhadap Bacillus subtillis dan Eschericia coli. Walisongo Journal of Chemistry, 1(1), Article 1. https://doi.org/10.21580/wjc.v2i1.2669
Gündüz, M., Çiçek, Ş. K., & Topuz, S. (2023). Extraction and optimization of phenolic compounds from butterbur plant (Petasites hybridus) by ultrasound-assisted extraction and determination of antioxidant and antimicrobial activity of butterbur extracts. Journal of Applied Research on Medicinal and Aromatic Plants, 35(May). https://doi.org/10.1016/j.jarmap.2023.100491
Hidayah, L. A., & Anggarani, M. A. (2022). Indonesian Journal of Chemical Science Determination of Total Phenolic , Total Flavonoid , and Antioxidant Activity of India Onion Extract. Indonesian Journal of Chemical Science, 11(2), 124–135.
Insanu, M., Marliani, L., & Dinilah, N. P. (2017). Comparison of antioxidant activities from four species of piper. Pharmaciana, 7(2), 305. https://doi.org/10.12928/pharmaciana.v7i2.6935
Jihan Hana Fauziah, Kiki Mulkiya Yuliawati, & Vinda Maharani Patricia. (2022). Pengaruh Perbedaan Pelarut Ekstraksi terhadap Aktivitas Antioksidan Ekstrak Kulit Buah Naga yang Diekstraksi dengan Metode Ultrasound-Assisted Extraction (UAE). Bandung Conference Series: Pharmacy, 2(2), 128–136. https://doi.org/10.29313/bcsp.v2i2.3584
Kamenetsky-Goldstein, R., & Yu, X. (2022). Cut peony industry: The first 30 years of research and new horizons. Horticulture Research, 9(April). https://doi.org/10.1093/hr/uhac079
Kandylis, P. (2022). Phytochemicals and Antioxidant Properties of Edible Flowers. Applied Sciences (Switzerland), 12(19). https://doi.org/10.3390/app12199937
Kusnadi, J., Wuri Andayani, D., & Zubaidah, E. (2019). Ekstraksi Senyawa Bioaktif Cabai Rawit (Capsicum Frutescens L.) Menggunakan Metode Ekstraksi Gelombang Ultrasonik. Jurnal Teknologi Pertanian, 20(2), 79–84. https://doi.org/10.21776/ub.jtp.2019.020.02.1
Mahardani, O. T., & Yuanita, L. (2021). Efek Metode Pengolahan Dan Penyimpanan Terhadap Kadar Senyawa Fenolik Dan Aktivitas Antioksidan. Unesa Journal of Chemistry, 10(1), 64–78. https://doi.org/10.26740/ujc.v10n1.p64-78
Moreira, R., Pereira, D. M., Valentão, P., & Andrade, P. B. (2018). Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. International Journal of Molecular Sciences, 19(6). https://doi.org/10.3390/ijms19061668
Noviyanty, A., Salingkat, C. A., & Syamsiar, S. (2019). Pengaruh Rasio Pelarut terhadap Ekstraksi dari Kulit Buah Naga Merah (Hylocereus polyrhizus). KOVALEN: Jurnal Riset Kimia, 5(3), 280–289. https://doi.org/10.22487/kovalen.2019.v5.i3.14029
Paulo, F., Tavares, L., & Santos, L. (2022). Response Surface Modeling and Optimization of the Extraction of Phenolic Antioxidants from Olive Mill Pomace. Molecules, 27(23). https://doi.org/10.3390/molecules27238620
Rahmayani, U., Pringgenies, D., & Djunaedi, A. (2013). Uji Aktivitas Antioksidan Ekstrak Kasar Keong Bakau (Telescopium telescopium) dengan Pelarut yang Berbeda terhadap Metode DPPH (Diphenyl Picril Hidrazil). Journal Of Marine Research, 2, 36–45.
Şahin, S., & Şamli, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics Sonochemistry, 20(1), 595–602. https://doi.org/10.1016/j.ultsonch.2012.07.029
Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., & Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101(August), 106646. https://doi.org/10.1016/j.ultsonch.2023.106646
Susiloningrum, D., & Sari, D. E. M. (2023). Optimasi Suhu UAE (Ultrasonik Asssisted Extraction) terhadap Nilai Sun Protection Factor (SPF) Ekstrak Rimpang Bangle (Zingiber purpureum Roxb) sebagai Kandidat Bahan Aktif Tabir Surya. Cendekia Journal of Pharmacy, 7(1), 58–66. https://doi.org/10.31596/cjp.v7i1.207
Wang, S., Xue, J., Zhang, S., Zheng, S., Xue, Y., Xu, D., & Zhang, X. (2020). Composition of peony petal fatty acids and flavonoids and their effect on Caenorhabditis elegans lifespan. Plant Physiology and Biochemistry, 155(February), 1–12. https://doi.org/10.1016/j.plaphy.2020.06.029
Widyasanti, A., Halimah, T., & Rohdiana, D. (2018). Ekstraksi Teh Putih Berbantu Ultrasonik pada Berbagai Amplitudo. Jurnal Aplikasi Teknologi Pangan, 7(3), 111–116. https://doi.org/10.17728/jatp.2295
Yang, Z., Dai, L., Zhang, L., Zhang, H., Cheng, Y., Zhou, L., & Su, W. (2024). Research Progress on Extraction and Purification of Selenium. Cailiao Daobao/Materials Reports, 38(5). https://doi.org/10.11896/cldb.22080188
Zhu, X., Das, R. S., Bhavya, M. L., Garcia-Vaquero, M., & Tiwari, B. K. (2024). Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up. Ultrasonics Sonochemistry, 105(March), 106850. https://doi.org/10.1016/j.ultsonch.2024.106850
DOI: https://doi.org/10.33394/hjkk.v13i1.14346
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.