Cover Image

Mercury Metal Absorption using Ethylene Diamine Tetraacetic Acid Intercalated Carbon

Dahlia Rosma Indah, Husnul Hatimah

Abstract


Silver craft waste contains hazardous metals, one of which is mercury metal. If high concentrations of mercury waste are disposed of without treatment, this waste seeps into the soil and pollutes residential water sources because mercury metal is difficult to decompose. Mercury poisoning can cause nerve reactions such as difficulty speaking, blurred vision, muscle weakness, paralysis, impaired sense of taste, and shortness of breath. This research was conducted as an effort to reduce mercury metal levels in silver craft waste in Central Lombok Regency. The method of waste treatment is by adsorption method utilizing carbon bagasse modified with EDTA. The first step is to first determine the level of mercury metal in silver craft wastewater in Central Lombok. Furthermore, wastewater is contacted with EDTA-intercalated bagasse carbon. Making intercalated carbon bagasse consists of 3 stages, namely first dehydration by burning bagasse until it turns into carbon, second carbonation is heating temperature 500ºC, carbon results are sifted 100-200 mesh and third, intercalation is by soaking 100 grams of carbon in 250 mL EDTA solution 10% stirred for 6 hours. After that the carbon is dried at a temperature of 50ºC. A total of 2 grams of intercalated bagasse carbon that has been made is put into 25 mL of wastewater samples. The sample was stirred at contact time variations of 30, 60, 90, 120 and 150 minutes using a stirer. The optimum time obtained is used to calculate the efficiency of reducing mercury metal levels, namely calculating the difference in mercury metal levels before adsorption and after adsorption using EDTA intercalated carbon baggase. Mercury metal levels were analyzed using an Atomic Absorption Spectrophotometer (SSA). From the study, it was found that the mercury metal content in the sample was 50.6398 ppb. The optimum contact time in mercury metal adsorption is at a contact time of 120 minutes which results in an optimum adsorption efficiency in mercury metal of 70.55%.


Keywords


metal absorption, mercury, silver craft waste, EDTA intercalated carbon

Full Text:

PDF

References


Apriliani. 2010. Pemanfaatan Arang dari Ampas Tebu Sebagai Adsorben Ion Logam Cd, Cr, Cu, dan Pb dalam Air Limbah. Skripsi. Jakarta : Universitas Islam Negeri Syarif Hidayatullah.

Bernhoft RA. 2012. Mercury Toxicity and Treatment : A Review of The Literature. Journal of Environmental and Public Health. 56 (1) : 46-56.

Farina M, Aschner M, Rocha JBT. 2011. Oxidative Stress in MeHg-induced Neurotoxicity.

Toxicology and Applied Pharmacology. 256(1) : 405-417.

Furieri L.B., Fioresi M, and Junior R.F.R. 2011. Exposure to Low Mercury Concentration in vivo Impairs Myocardial Contractile Function. Toxicology and Applied Pharmacology.255(2) : 193-199.

Handoko, C.T., Yanti, T.B., Syadiyah, H., dan Marwati, S. 2013. Penggunaan Metode Presipitasi Untuk Menurunkan Kadar Cu dalam Limbah Cair Industri Perak di Kotagede. Jurnal Penelitian Saintek. 18 (2) : 51-58.

https://travel.kompas.com/read/2017/05/24/15510540/Desa.Ungga.Sohor.karena.Kerajinan.Perak. Retrieved July 10, 2018.

Imelda,H., Silalahi, Zahara, T.A., dan Tampubolon, H.M. 2012. Kapasitas Adsorpsi

Merkuri Menggunakan Adsorben Sargassum Crassifolium Teraktivasi. Biopropal Industri.(1) : 28-38.

Indah, D.R. dan Hendrawani. 2017. Upaya Menurunkan Kadar Ion Logam Besi pada Air

Sumur Dengan Memanfaatkan Arang Ampas Tebu. Jurnal Ilmiah Pendidikan Hydrogen.5(2) : 68-74.

Jaguaribe, E.F., Medeiros, L.L., Barreto, M.C.S.,and Araujo,L.P. 2015. The Performance of Activated Carbons from Sugarcane Bagasse, Babassu, and Coconut Shells in

Kargi, F. and Cikla, S. 2016. Biosorption of Zinc (II) Ions Onto Powdered Waste Sludge

(PWS) : Kinetics and Isotherms. Enzyme and Micobial Technology. 38(5) : 705-710.

Kaur S., Walia T.P.S.,and Mahajan R.K. 2008. Comparative Studies of Zink, Cadmium, Lead, and Copper on Economically Viable Adsorbents. Journal Environ. Eng. Sci. 7 :1-8.

Manocha, S. M. 2013. Porous Carbons. Jurnal Sadhana. Vol. 28, part 1 dan 2.

Palar, H. 2012. Pencemaran dan Toksikologi Logam Berat. Jakarta : Rineka Cipta.

Roto, R., Indah, D.R., dan Kuncaka, A. 2015. Hydrotalsit Zn-Al-EDTA Sebagai Adsorben Untuk Polutan Ion Pb (II) di Lingkungan. Jurnal Manusia dan Lingkungan. 22 (2) : 226-232.

Selvi, K., Pattabhi S and Kardivelu K. 2011. Removal of Cr(VI) from Aqueous Solution by Adsorption Onto Activated Carbon. Bioresour Technol. Vol 80 : 87-89.

Shofa. 2012. Pembuatan Karbon Aktif Berbahan Baku Ampas Tebu dengan Aktivasi Kalium Hidroksida. Skripsi. Jakarta : Fakultas Teknik Kimia Universitas Indonesia.

Sulistyawati, S. 2008. Modifikasi Tongkol Jagung Sebagai Adsorben Logam Berat Pb (II). Skripsi. Bogor : FMIPA IPB.

Tandy, E., Fahmi, I., and Hamidah. 2012. Kemampuan Adsorben Limbah Lateks Karet Alam Terhadap Minyak Pelumas dalam Air. Jurnal Teknik Kimia. 1 (2) : 70-75.

Wahjuni, N.S., Danny, A., dan Desty, R. 2015. Perbandingan Tingkat Adsorpsi Chitin dan Karbon Aktif dalam Menjerap Logam Chromium dalam Tangki Berpengaduk. Seminar Teknik Kimia Fakultas Teknik UNS, Surakarta. Hal. 71-76.




DOI: https://doi.org/10.33394/hjkk.v11i5.10097

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.