The Effect of Virtual Lab (VL) Game-Based Guided Inquiry Learning on Students’ Science Literacy in Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Abdulwahed, M., & Nagy, Z. K. (2011). The TriLab, a novel ICT based triple access mode laboratory education model. Computers & Education, 56(1), 262–274. https://doi.org/10.1016/j.compedu.2010.07.02312
Afriani, T., & Agustin, R. R. (2019). The effect of guided inquiry laboratory activity with video embedded on students' understanding and motivation in learning light and optics. Journal of Science Learning, 2(4), 79-84. DOI: 10.17509/jsl.v2i3.15144
Akaygun, S., & Adadan, E. (2019). Revisitingthe understanding of redox reactions through critiquing animations in variance. In M, Schultz, S. Schmid, & G. A. Lawrie (Eds.),Research and Practice in Chemistry Education (pp. 7–29). Springer. https://doi.org/10.1007/978-981-13-6998-8_2
Alneyadi, S. S. (2019). Virtual lab lmplementation in science literacy: emirati science teachers’ perspectives. Eurasia Journal of Mathematics, Science and Technology Education, 15(12), em1786. https://doi.org/10.29333/ejmste/109285
B. Kitchenham, B.(2004). Procedures for Performing Systematic Reviews. Keele University Technical. https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf.
Chang, C. J., Liu, C. C., Wen, C. T., Tseng, L. W., Chang, H. Y., Chang, M. H., Chiang, S.H.F., Hwang, F.K., & Yang., C.W. (2020). The impact of light-weight inquiry with computer simulations on science learning in classrooms. Computers & Education, 146, 103770. https://doi.org/10.1016/j.compedu.2019.103770 z
Chang, H.-Y., & Linn, M. C. (2013). Scaffolding learning from molecular visualizations. Journal of Research in Science Teaching, 50(7), 858–886. https://doi.org/10.1002/tea.21089
Chao, J., Chiu, J. L., DeJaegher, C. J., & Pan, E. A. (2016). Sensor-augmented virtual labs: Using physical interactions with science simulations to promote understanding of gas behaviour. Journal of Science Education and Technology, 25(1), 16–33. https://doi.org/10.1007/s10956-015-9574-4
Charney, J., Hmelo-Silver, C. E., Sofer, W., Neigeborn, L., Coletta, S., & Nemeroff, M. (2007). Cognitive apprenticeship in science through immersion in laboratory practices. International Journal of Science Education, 29(2), 195–213. http://dx.doi.org/10.1080/09500690600560985
Chatterjee, S. (2020). A primer for transitioning to online science labs: “Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science”. Educational Technology Research and Development, 69(1), 249-253. https://doi.org/10.1007/s11423-020-09906-x
de Jong, T., Gillet, D., Rodríguez-Triana, M. J., Hovardas, T., Dikke, D., Doran, R., Dziabenko, O., Koslowsky, J., Korventausta, M., Law, E., Pedaste, M., Tasiopoulou, E., Vidal, G., & Zacharia, Z. C. (2021). Understanding teacher design practices for digital inquiry–based science learning: the case of Go-Lab. 13 Educational Technology Research and Development, 69(2), 417–444. https://doi.org/10.1007/s11423-020-09904-z
de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308. doi:10.1126/science.1230579
de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments, 1(1), 1–16. https://doi.org/10.29303/jppipa.v8i4.2174
Efstathiou, C., Hovardas, T., Xenofontos, N. A., Zacharia, Z. C., deJong, T., Anjewierden, A., & van Riesen, S.A.N. (2018). Providing guidance in virtual lab experimentation: The case of an experiment design tool. Education Technology Research and Development, 66(3), 767–791. https://doi.org/10.1007/s11423-018-9576-z
Ekici, M., & Erdem, M. (2020). Developing science process skills through mobile scientific inquiry. Thinking Skills and Creativity, 36, 100658. http://dx.doi.org/10.1016/j.tsc.2020.100658
Fives, H., Huebner, W., Birnbaum, A. S., & Nicolich, M. (2014). Developing a measure of scientific literacy for middle school students. Science Education, 98(4), 549-580. https://doi.org/10.1002/sce.21115
Henderson, J. B., MacPherson, A., Osborne, J., & Wild, A. (2015). Beyond construction: Five arguments for the role and value of critique in learning science. International Journal of Science Education, 37(10),1668–1697. http://dx.doi.org/10.1080/09500693.2015.1043598
Gillet, D., de Jong, T., Sotirou, S., & Salzman, C.(2013,March 13-March 15). Personalised Learning Spaces and Federated Online Labs for STEM Education at School.[Paper Presentation].2013 IEEE Global Engineering Education Conference (EDUCON).Technische Universität Berlin, Berlin, Germany. http://dx.doi.org/10.1109/EduCon.2013.6530194.
Grabau, L.J., & Ma, X.(2017). Science engagement and science achievement in the context of science instruction: a multilevel analysis of U.S. students and schools. International Journal of Science Education, 39(8), 1045- 1068, https://doi.org/10.1080/09500693.2017.131346814
Heradio, R., De La Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., & Dormido, S. (2016). Virtual and remote labs in education: A bibliometric analysis. Computers & Education, 98, 14–38. https://doi.org/10.1016/j.compedu.2016.03.010
Ismail, I., Permanasari, A., & Setiawan, W. (2016). STEM virtual lab: an alternative practical media to enhance student's scientific literacy. Jurnal Pendidikan IPA Indonesia, 5(2), 239- 246. https://doi.org/10.15294/jpii.v5i2.5492
J. Bettany-Saltikov, J &McSherry, R. (2012). How to do a Systematic Literature Review in Nursing – A Step-by-Step Guide. McGraw-Hill Education
Lee, M. C., & Sulaiman, F. (2018). The effectiveness of practical work on students’ motivation and understanding towards learning physics. International Journal of Humanities and Social Science Invention, 7(8), 2319-7714. https://www.ijhssi.org/papers/vol7(8)/Version-3/F0708033541.pdf
Jannati, E. D., Setiawan, A., Siahaan, P., & Rochman, C. (2018). Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement. Journal of Physics: Conference Series 1013(1):012061. doi:10.1088/1742- 6596/1013/1/012061.
Lefkos, I., Psillos, D., & Hatzikraniotis, E. (2011). Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment. Research in Science & Technological Education, 29(2), 189–204. http://dx.doi.org/10.1080/02635143.2010.533266
Listiani, I., Susilo, H., & Sueb, S. (2022). Relationship between scientific literacy and critical thinking of prospective teachers. Al-Ishlah: Jurnal Pendidikan, 14(1), 721- 730. DOI: 10.35445/alishlah.v14i1.1355
Liu, C. C., Wen, C. T., Chang, H. Y., Chang, M. H., Lai, P. H., Fan Chiang, S. H., Yang, C. W., & Hwang, F. K. (2022). Augmenting the effect of virtual labs with “teacher demonstration” and “student critique” instructional designs to scaffold the development of scientific literacy. Instructional Science, 50(2), 303–333. https://doi.org/10.1007/s11251-021-09571-4.
Newman, M & Gough, D. (2020). Systematic Reviews in Educational Research: Methodology, Perspectives and Application in Systematic Reviews in Educational Research, O. Zawacki-Richter, M. Kerres, S. Bedenlier, M. Bond, and K. Buntins, Eds. Springer VS, Wiesbaden, 1-18. doi: 10.1007/978-3-658-27602-7_1.
OECD.(2018). PISA 2018 Assessment and Analytical Framework. OECD Publishing. https://www.oecd.org/education/pisa-2018-assessment-and-analytical framework-b25efab8-en.htm
OECD. (2019).Skills Strategy 2019 Skills to Shape a Better Future: Skills to Shape a Better Future. OECD Publishing. https://www.oecd.org/skills/oecd-skills strategy-2019-9789264313835-en.htm15
Prasetiyo, W, H., Naidu, N. B. M., Tan, B. P. & Sumardjoko, B. (2021). Digital citizenship trend in educational sphere: A systematic review. International Journal of Evaluation and Research in Education (IJERE),10(4), 1192-1201, 2021. doi: 10.11591/ijere.v10i4.21767.
Purwani, L. D., Sudargo, F., & Surakusumah, W. (2018). Analysis of student’s scientific literacy skills through socioscientific issue’s test on biodiversity topics. Journal of Physics: Conference Series, 1013, 012019. https://doi.org/10.1088/1742- 6596/1013/1/012019.
Putri, L. A., Permanasari, A., Winarno, N., & Ahmad, N. J. (2021). Enhancing students’ scientific literacy using virtual lab activity with inquiry-based learning. Journal of Science Learning, 2021(2), 173–184. https://doi.org/10.17509/jsl.v4i2.27561.
Quellmalz, E. S., Silberglitt, M. D., Buckley, B. C., Loveland, M. T., & Brenner, D. G. (2020). Simulations for supporting and assessing science literacy. In Learning and performance assessment: concepts, methodologies, tools, and applications ( 760– 799). IGI Global. DOI: 10.4018/978-1-7998-0420-8.ch036
Rodríguez-Triana, M. J., Prieto, L. P., Dimitriadis, Y., de Jong, T., & Gillet, D. (2021). ADA for IBL: lessons learned in aligning learning design and analytics for inquiry-based learning orchestration. Journal of Learning Analytics, 8(2), 22-50. https://doi.org/10.18608/jla.2021.7357
Septiani, D., & Susanti, S. (2021). Urgensi pembelajaran inkuiri di abad ke 21: Kajian Literatur. [The Urgency of Inquiry Learning in the 21st Century: Literature Review.] SAP (Susunan Artikel Pendidikan), 6(1). https://doi.org/10.30998/sap.v6i1.7784
Suprapto, N., Sunarti, T., Suliyanah, Wulandari, D.,Hidayaatullaah, H. N., Adam, A. S., & Mubarok, H.(2020). A systematic review of photovoice asparticipatory action research strategies. InternationalJournal of Evaluation and Research in Education,9(3), 675–683. Doi: 10.11591/ijere.v9i3.20581
Taramopoulos, A., & Psillos, D. (2017). Complex phenomena understanding in electricity through dynamically linked concrete and abstract representations. Journal of Computer Assisted Learning, 33(2), 151–163. https://doi.org/10.1111/jcal.12174
Ural, E. (2016). The effect of guided-inquiry laboratory experiments on science education students' chemistry laboratory attitudes, anxiety and achievement. Journal of Education and Training Studies, 4(4), 217- 227. https://doi.org/10.11114/jets.v4i4.1395
Wen, C. T., Chang, C. J., Chang, M. H., Chiang, S. H. F., Liu, C. C., Hwang, F. K., & Tsai, C. C. (2018). The learning analytics of model-based learning facilitated by a problem-solving simulation game. Instructional Science, 46(6), 847–867. https://doi.org/10.1007/s11251-018-9461-5
Wen, C. T., Liu, C. C., Chang, H. Y., Chang, C. J., Chang, M. H., Chiang, S. H. F., Yang, K. F., & Hwang, F. K. (2020). Students’ guided inquiry with simulation and its relation to school science achievement and scientific literacy. Computers & Education, 149, 103830. https://doi.org/10.1016/j.compedu.2020.10383016
Zacharias, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021–1035. https://doi.org/10.1002/tea.20260
Zhang, L. (2016). Is inquiry-based science teaching worth the effort?. Science & Education, 25(7-8), 897-915. https://doi.org/10.1007/s11191-016-9856-0
DOI: https://doi.org/10.33394/jtp.v8i4.8926
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Rangga Alif Faresta, Mega Safana, Rizal M. Suhardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This Journal has been Indexed by:
Jurnal Teknologi Pendidikan
ISSN: 2656-1417 (Online)
ISSN: 2503-0620 (Print)
Published by Program Studi Teknologi Pendidikan, FIPP
Universitas Pendidikan Mandalika
Email: [email protected]
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.