Eksplorasi Peran Reactive Oxygen Species (ROS) yang diinduksi oleh Ekstrak Caesalpinia Sappan untuk Air yang Terkontaminasi Anabaena sp.

Himawan Akbar Mahendra, Intan Supraba, Budi Kamulyan, Eko Agus Suyono

Abstract


This study aims toexplore the reduction of Anabaena sp. populations using Caesalpinia sappan extract, aiming to determine the optimal concentration to induce oxidative stress that weakens cell structures via increased production of Reactive Oxygen Species (ROS). Water quality parameterssuch as color, turbidity, and Total Dissolved Solids (TDS)were analyzed to evaluate the extract's effectiveness on the aquatic ecosystem. Employing a combination of the TRIZ (Theory of Inventive Problem Solving) method and a True Experimental design, the study optimized extract concentration variations and examined the ability of Caesalpinia sappan (sappan wood) to penetrate the peptidoglycan layer of Anabaena sp. Results obtained over two days indicate that the bioactive compounds in Caesalpinia sappan induce ROS, as evidenced by an increase in color intensity from day 1 to day 2 due to pigment release from Anabaena sp. in response to oxidative stress. Higher extract concentrations led to a significant reduction in Anabaena sp. populations, with the 100% concentration yielding an 86% decrease on day 2, alongside a color reading of 1209 Cu, turbidity of 39.6 NTU, and TDS of 114.5 mg/l. Microscopic observations revealed notable cell disintegration and damage in Anabaena sp. This study confirms that bioactive compounds, such as brazilin and flavonoids in Caesalpinia sappan, contribute to ROS generation, leading to cell death in Anabaena sp. via oxidative stress.


Keywords


Caesalpinia sappan; Harmful Algae Blooms (HAB); stres oksidatif; Reactive Oxygen Species (ROS); kualitas air

Full Text:

PDF

References


Abdul Rahim, Z., Lim, I., & Bakar, N. (2015). TRIZ Methodology for Applied Chemical Engineering: A Case Study of New Product Development. Chemical Engineering Research and Design, 103. https://doi.org/10.1016/j.cherd.2015.08.027

Arenas, E., Rodríguez-Palacio, M. C., Juantorena, A. U., Santis-Espinosa, L. F., & Sebastián, P. J. (2016). Microalgae as a Potential Source for Biodiesel Production: Techniques, Methods, and Other Challenges. International Journal of Energy Research, 41(6), 761–789. https://doi.org/10.1002/er.3663

Azim, N. H., Subki, A., & Yusof, Z. N. B. (2018). Abiotic Stresses Induce Total Phenolic, Total Flavonoid and Antioxidant Properties in Malaysian Indigenous Microalgae and Cyanobacterium. Malaysian Journal of Microbiology. https://doi.org/10.21161/mjm.100317

Bennett, A., & Bogorad, L. (1973). Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. The Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419

Bosma, R., Spronsen, W. A. van, Tramper, J., & Wijffels, R. H. (2003). Ultrasound, a New Separation Technique to Harvest Microalgae. Journal of Applied Phycology, 15(2/3), 143–153. https://doi.org/10.1023/a:1023807011027

Chang, S., Tang, Y., Dong, L., Zhan, Q., & Xu, W. (2018). Impacts of Sewer Deposits on the Urban River Sediment After Rainy Season and Bioremediation of Polluted Sediment. Environmental Science and Pollution Research, 25(13), 12588–12599. https://doi.org/10.1007/s11356-018-1457-9

Davidson, K., Gowen, R. J., Harrison, P. J., Fleming, L. E., Hoagland, P., & Moschonas, G. (2014). Anthropogenic Nutrients and Harmful Algae in Coastal Waters. Journal of Environmental Management, 146, 206–216. https://doi.org/10.1016/j.jenvman.2014.07.002

Febriyani, E., Falah, S., Andrianto, D., & Lastini, T. (2018). Identification of Active Compounds and Anti-Acne Activity From Extracts and Fractions of Surian (Toona Sinensis) Leaves Planted in Sumedang, West Java, Indonesia. Biodiversitas Journal of Biological Diversity, 19(4), 1406–1412. https://doi.org/10.13057/biodiv/d190429

Gill, S. S., & Tuteja, N. (2010). Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

He, Y., & Häder, D. P. (2002a). Involvement of Reactive Oxygen Species in the UV-B Damage to the Cyanobacterium Anabaena Sp. Journal of Photochemistry and Photobiology B Biology, 66(1), 73–80. https://doi.org/10.1016/s1011-1344(01)00278-0

He, Y., & Häder, D. P. (2002b). UV-B-induced Formation of Reactive Oxygen Species and Oxidative Damage of the Cyanobacterium Anabaena Sp.: Protective Effects of Ascorbic Acid and N-Acetyl-L-Cysteine. Journal of Photochemistry and Photobiology B Biology, 66(2), 115–124. https://doi.org/10.1016/s1011-1344(02)00231-2

Hiltmann, K., Souchkov, V., Thurnes, C., Adunka, R., Koltze, K., Livotov, P., Mayer, O., & Müller, W. (2014). Standard VDI 4521: Solving Inventive Problems with TRIZ (Status) (pp. 247–254).

Janse van Vuuren, S., Swanepoel, A., Preez, H., Schoeman, C., & Sundram, A. (2008). Condensed Laboratory Methods for Monitoring Phytoplankton, including Cyanobacteria, in South African Freshwaters.

Klepacz-Smółka, A., Pietrzyk, D., Szeląg, R., Głuszcz, P., Daroch, M., Tang, J., & Ledakowicz, S. (2020). Effect of Light Colour and Photoperiod on Biomass Growth and Phycocyanin Production by Synechococcus PCC 6715. Bioresource Technology, 313, 123700. https://doi.org/10.1016/j.biortech.2020.123700

Kumar, K. P., Mella-Herrera, R. A., & Golden, J. W. (2010). Cyanobacterial Heterocysts. Cold Spring Harbor Perspectives in Biology, 2(4), a000315–a000315. https://doi.org/10.1101/cshperspect.a000315

Latifi, A., Ruiz, M., & Zhang, C. (2009). Oxidative Stress in Cyanobacteria. Fems Microbiology Reviews, 33(2), 258–278. https://doi.org/10.1111/j.1574-6976.2008.00134.x

Lee, H., Kang, S. W., Byun, H. S., Jeon, J., Park, K. A., Kang, K. K., Seo, W., Won, M., Seok, J. H., Han, M. D., Shen, H., & Hur, G. M. (2015). Brazilin Limits Inflammatory Responses Through Induction of Prosurvival Autophagy in Rheumatoid Fibroblast-Like Synoviocytes. Plos One, 10(8), e0136122. https://doi.org/10.1371/journal.pone.0136122

Lee, S. M., Kim, S.-M., & Lee, Y. H. (2012). Introduction of the M(i,j,k)BCP and Risk Assessment of Underground Limestone Mine. Tunnel and Underground Space, 22(6), 383–392. https://doi.org/10.7474/tus.2012.22.6.383

Lourenço, S. O., Barbarino, E., Mancini-Filho, J., Schinke, K. P., & Aidar, E. (2002). Effects of Different Nitrogen Sources on the Growth and Biochemical Profile of 10 Marine Microalgae in Batch Culture: An Evaluation for Aquaculture. Phycologia, 41(2), 158–168. https://doi.org/10.2216/i0031-8884-41-2-158.1

Matos, Â. P. (2017). The Impact of Microalgae in Food Science and Technology. Journal of the American Oil Chemists Society, 94(11), 1333–1350. https://doi.org/10.1007/s11746-017-3050-7

Mur, L. R. (1983). Some Aspects of the Ecophysiology of Cyanobacteria. Annales De L Institut Pasteur Microbiologie, 134(1), 61–72. https://doi.org/10.1016/s0769-2609(83)80097-0

Nirmal, N. P., Rajput, M. S., Prasad, R. G. S. V., & Ahmad, M. (2015). Brazilin From Caesalpinia Sappan Heartwood and Its Pharmacological Activities: A Review. Asian Pacific Journal of Tropical Medicine, 8(6), 421–430. https://doi.org/10.1016/j.apjtm.2015.05.014

Paerl, H. W., & Otten, T. G. (2013). Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microbial Ecology, 65(4), 995–1010. https://doi.org/10.1007/s00248-012-0159-y

Pan, G., Lyu, T., & Mortimer, R. J. G. (2018). Comment: Closing Phosphorus Cycle From Natural Waters: Re-Capturing Phosphorus Through an Integrated Water-Energy-Food Strategy. Journal of Environmental Sciences, 65, 375–376. https://doi.org/10.1016/j.jes.2018.02.018

Panda, B., Basu, B., Rajaram, H., & Apte, S. K. (2014). Methyl Viologen Responsive Proteome Dynamics OfAnabaenasp. Strain PCC7120. Proteomics, 14(16), 1895–1904. https://doi.org/10.1002/pmic.201300522

Rasmussen, S., Binzer, S., Hoeck, C., Soman de Medeiros, L., Andersen, N., Place, A., Nielsen, K., Hansen, P., & Larsen, T. O. (2017). Karmitoxin: An Amine-Containing Polyhydroxy-Polyene Toxin from the Marine Dinoflagellate Karlodinium armiger. Journal of Natural Products, 80. https://doi.org/10.1021/acs.jnatprod.6b00860

Renault, F., Sancey, B., Badot, P.-M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes – An eco-friendly approach. European Polymer Journal, 45(5), 1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027

Sazali, A., Adriadi, A., Yusuf, A., Maritsa, H., Siringo-ringo, A., & Kise, H. (2024). AKTIVITAS ANTIBAKTERI EKSTRAK KAYU SECANG ( Caesalpinia sappan L.) TERHADAP BAKTERI Edwardsiella tarda DAN Edwardsiella ictaluri PATOGEN BUDIDAYA PERIKANAN. Berita Biologi, 23, 41–48. https://doi.org/10.55981/beritabiologi.2024.2606

Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E., & Orihel, D. M. (2016). Reducing Phosphorus to Curb Lake Eutrophication Is a Success. Environmental Science & Technology, 50(17), 8923–8929. https://doi.org/10.1021/acs.est.6b02204

Silva, R., Gonçalves, T., Morone, J., Moreira, G. A., Morais, J., Hentschke, G. S., Álvarez-Gutiérrez, P. E., Batista-García, R. A., Vasconcelos, V., & Lopes, G. (2024). Pigments profile and antioxidant potential of extremophile cyanobacteria isolated from the Mexican Volcanic Lake Chichonal. Algal Research, 81, 103578. https://doi.org/10.1016/j.algal.2024.103578

Tan, D.-X., Manchester, L. C., Qin, L., & Reiter, R. J. (2016). Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. International Journal of Molecular Sciences, 17(12). https://doi.org/10.3390/ijms17122124

Tewtrakul, S., Tungcharoen, P., Sudsai, T., Karalai, C., Ponglimanont, C., & Yodsaoue, O. (2015). Antiinflammatory and Wound Healing Effects of Caesalpinia Sappan L. Phytotherapy Research, 29(6), 850–856. https://doi.org/10.1002/ptr.5321

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. L., & Polasky, S. (2002). Agricultural Sustainability and Intensive Production Practices. Nature, 418(6898), 671–677. https://doi.org/10.1038/nature01014

Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels. Journal of Renewable and Sustainable Energy, 2(1). https://doi.org/10.1063/1.3294480

Xu, Z., Xiong, L., Li, H., Yin, H., Wu, J., Xu, J., & Zhang, J. (2017). Pollution Characterization and Source Analysis of the Wet Weather Discharges in Storm Drainages. Desalination and Water Treatment, 72, 169–181. https://doi.org/10.5004/dwt.2017.20687

Zhang, P., Peng, C., Zhang, J., Zhang, J., Chen, J., & Zhao, H. (2022). Long-Term Harmful Algal Blooms and Nutrients Patterns Affected by Climate Change and Anthropogenic Pressures in the Zhanjiang Bay, China. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.849819




DOI: https://doi.org/10.33394/bioscientist.v13i1.14756

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia