Predicition Molecular Docking, Pharmacokinetic, Physicochemical, Toxicity, Synthetic Accessibility Aspect of Several Compounds in Cratoxylum glaucum and Cratoxylum arborescens as Antimalarial

Suryanto Suryanto, Faisal Akhmal Muslikh, Nadhifatun Nahdhia, Delis Susilawati

Abstract


This study aims to identify potential antimalarial compounds targeting the Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH), given the parasite's dependency on glycolysis for energy production. Considering the high similarity of LDH enzymes across Plasmodium species, developing novel PfLDH inhibitors may offer therapeutic benefits, particularly against P. vivax, P. malariae, and P. ovale. Computational approaches were employed to screen natural compounds from the Cratoxylum genus (Cratoxylum glaucum and Cratoxylum arborescens). Molecular docking was performed using Molegro Virtual Docking (MVD) to assess binding affinity. SwissADME was utilized to evaluate pharmacokinetic, physicochemical, synthetic accessibility properties, and
ProTox II was used for toxicity prediction. Molecular docking results indicated that fuscaxanthone C and 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone exhibited strong inhibitory activity against PfLDH, with rerank scores of -103.068 kcal/mol and -111.141 kcal/mol, respectively surpassing the reference ligand chloroquine (-94.307 kcal/mol). Pharmacokinetic analysis revealed that all compounds, except stigmasterol and fuscaxanthone C, met Lipinski’s Rule of Five. Toxicity prediction categorized fuscaxanthone C as Class III (toxic). Additionally, synthetic accessibility predictions indicated that all compounds, except stigmasterol, are easy to synthesize. Natural compounds from the Cratoxylum genus, particularly 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone, show promise as PfLDH inhibitors. Despite its potency, fuscaxanthone C's toxicity profile warrants caution. Further studies are needed to validate these findings through in vitro and in vivo testing.


Keywords


Cratoxylum glaucum; Cratoxylum arborescens; malaria; molecular docking

Full Text:

PDF

References


Abdollahi, M., & Behboudi, A. F. (2014). Nitroglycerin. Encyclopedia of Toxicology: Third Edition, 3, 569–572.

Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., & Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13(1), 1–18.

Björnsson, E. S. (2016). Hepatotoxicity by drugs: The most common implicated agents. International Journal of Molecular Sciences, 17(2).

Chagas, C. M., Moss, S., & Alisaraie, L. (2018). Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. International Journal of Pharmaceutics, 549(1–2), 133–149.

Chaniad, P., Mungthin, M., Payaka, A., Viriyavejakul, P., & Punsawad, C. (2021). Antimalarial properties and molecular docking analysis of compounds from Dioscorea bulbifera L. as new antimalarial agent candidates. BMC Complementary Medicine and Therapies, 21(1), 1–10.

Chedik, L., Mias-Lucquin, D., Bruyere, A., & Fardel, O. (2017). In silico prediction for intestinal absorption and brain penetration of chemical pesticides in humans. International Journal of Environmental Research and Public Health, 14(7).

Chen, X., Li, H., Tian, L., Li, Q., Luo, J., & Zhang, Y. (2020). Analysis of the Physicochemical Properties of Acaricides Based on Lipinski’s Rule of Five. Journal of Computational Biology, 27(9), 1397–1406.

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13.

Das, D. R., Kumar, D., Kumar, P., & Dash, B. P. (2020). Molecular docking and its application in search of antisickling agent from Carica papaya. Journal of Applied Biology and Biotechnology, 8(1), 105–116.

Gadaleta, D., Vuković, K., Toma, C., Lavado, G. J., Karmaus, A. L., Mansouri, K., Kleinstreuer, N. C., Benfenati, E., & Roncaglioni, A. (2019). SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. Journal of Cheminformatics, 11(1), 1–16.

Habibi, P., Shi, Y., Fatima Grossi-de-Sa, M., & Khan, I. (2022). Plants as Sources of Natural and Recombinant Antimalaria Agents. Molecular Biotechnology, 64(11), 1177–1197.

Hsu, K. H., Su, B. H., Tu, Y. S., Lin, O. A., & Tseng, Y. J. (2016). Mutagenicity in a molecule: Identification of core structural features of mutagenicity using a scaffold analysis. PLoS ONE, 11(2), 1–17.

Huang, H., Chu, C. L., Chen, L., & Shui, D. (2019). Evaluation of potential inhibitors of squalene synthase based on virtual screening and in vitro studies. Computational Biology and Chemistry, 80(2), 390–397.

Ibrahim, Z. Y., Uzairu, A., Shallangwa, G. A., Abechi, S. E., & Isyaku, S. (2022). Virtual screening and molecular dynamic simulations of the antimalarial derivatives of 2-anilino 4-amino substituted quinazolines docked against a Pf-DHODH protein target. Egyptian Journal of Medical Human Genetics, 23(1).

Kemenkes RI. (2023). Laporan Kinerja 2022. Direktorat Pencegahan dan Pengendalian Penyakit Menular Kementerian Kesehatan.

Laphookhieo, S., Maneerat, W., & Koysomboon, S. (2009). Antimalarial and cytotoxic phenolic compounds from cratoxylum maingayi and cratoxylum cochinchinense. Molecules, 14(4), 1389–1395.

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL.), 4–17.

Ma'arif, B., Muslikh, F. A., Amalia, D., Mahardiani, A., Muchlasi, L. A., Riwanti, P., ... & Agil, M. (2022). Metabolite Profiling of the Environmental-Controlled Growth of Marsilea crenata Presl. and Its In Vitro and In Silico Antineuroinflammatory Properties. Borneo Journal of Pharmacy, 5(3), 209-228.

Morris-Schaffer, K., & McCoy, M. J. (2021). A Review of the LD50and Its Current Role in Hazard Communication. ACS Chemical Health and Safety, 28(1), 25–33.

Ononamadu, C. J., & Ibrahim, A. (2021). Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. Biotechnologia, 102(1), 85–99.

Penna-Coutinho, J., Cortopassi, W. A., Oliveira, A. A., França, T. C. C., & Krettli, A. U. (2011). Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS ONE, 6(7).

Rahmasari, F. V., Asih, P. B. S., Dewayanti, F. K., Rotejanaprasert, C., Charunwatthana, P., Imwong, M., & Syafruddin, D. (2022). Drug resistance of Plasmodium falciparum and Plasmodium vivax isolates in Indonesia. Malaria Journal, 21(1), 1–32.

Rénia, L., Howland, S. W., Claser, C., Gruner, A. C., Suwanarusk, R., Teo, T. H., Russell, B., & Lisa, N. P. (2012). Cerebral malaria Mysteries at the blood-brain barrier. Virulence, 3(2), 193–201.

Shah, V. R., Bhaliya, J. D., & Patel, G. M. (2021). In silico approach: Docking study of oxindole derivatives against the main protease of COVID-19 and its comparison with existing therapeutic agents. Journal of Basic and Clinical Physiology and Pharmacology, 32(3), 197–214.

Sim, W. C., Ee, G. C. L., Lim, C. J., & Sukari, M. A. (2011). Cratoxylum glaucum and cratoxylum arborescens (guttiferae)- Two potential source of antioxidant agents. Asian Journal of Chemistry, 23(2), 569–572.

Suryanto, S., Tumewu, L., Ilmi, H., Hafid, A. F., Suciati, S., & Widyawaruyanti, A. (2024). Antimalarial activity of Cratoxyarborenone E, a prenylated xanthone, isolated from the leaves of Cratoxylum glaucum Korth. Pharmacia, 71, 1–7.

Son, N. T. (2019). A Mini-review of the Tropical Plant Cratoxylum fomosum ssp. pruniflorum: Phytochemical and Pharmacological Aspects. Letters in Organic Chemistry, 17(5), 327–339.

Taek, M. M., Ma'arif, B., Maulina, N., Muslikh, F. A., & Lalong, P. R. F. (2024). Consumer Behavior Analysis as a Form of Pre-market Survey for the Black Pule (Alstonia spectabilis) Antimalarial Tablet Prototype. Galenika Journal of Pharmacy, 10(2), 160-170.

Tumewu, L., Wardana, F. Y., Ilmi, H., Permanasari, A. A., Hafid, A. F., & Widyawaruyanti, A. (2021). Cratoxylum sumatranum stem bark exhibited antimalarial activity by Lactate Dehydrogenase (LDH) assay. J Basic Clin Physiol Pharmacol, 32(4), 817–822.

WHO. (2022). World Malaria Report 2022. World Health Organization.

Zakaria, N. H., Hassan, N. I., & Wai, L. K. (2020). Molecular docking study of the interactions between plasmodium falciparum lactate dehydrogenase and 4-aminoquinoline hybrids. Sains Malaysiana, 49(8), 1905–1913.




DOI: https://doi.org/10.33394/bioscientist.v13i1.13809

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia