Digitalisasi Preparat Mikroskopis Plasmodium falciparum dan Plasmodium vivax Sebagai Media Pembelajaran Protozoologi
Abstract
One of the competencies of health students in the health protozoology course is being able to identify the microscopic morphology of Plasmodium sp. However, the identification of Plasmodium sp. is still widely done using conventional ATLAS. Therefore, innovation is needed using digital ATLAS. The purpose of this study was to digitize microscopic images of Plasmodium vivax and falciparum as a learning medium for protozoology courses. This type of research is quantitative descriptive. The sources of digital data in this study were Plasmodium falciparum trophozoite and gametocyte phase preparations and Plasmodium vivax amoeboid phase. This research method includes documentation, editing, validation, description, inventory, and evaluation. The results of this study are the number of images that were successfully digitized is 158 images consisting of Plasmodium falciparum ring phase as many as 58, gametocyte phase as many as 19, and P. vivax as many as 81 images with quality including the sufficient category, the percentage of digital ATLAS usage is 73.6 while conventional ATLAS is 47.8. The conclusion of this study is that the digitalization of microscopic images of Plasmodium vivax and falciparum can be developed into an Android-based application.
Keywords
Full Text:
PDFReferences
Adhinata Dharma, F., Suryani, E., & Dirgahayu, P. (2016). Identification of Parasite Pasmodium SP. on Thin Blood Smears With Rule-Based Method. Jurnal ITSMART, 5(1), 16-24. https://doi.org/10.20961/itsmart.v5i1.2028
Avichena, A., & Anggriyani, R. (2023). Analysis of Malaria Disease Caused by Plasmodium sp Against Human Blood. EKOTONIA: Jurnal Penelitian Biologi, Botani, Zoologi Dan Mikrobiologi, 8(1), 30–37. https://doi.org/10.33019/ekotonia.v8i1.4128
Azif, F. M., Nugroho, H. A., & Wibirama, S. (2018). Communications In Science And Technology Detection of malaria parasites in thick blood smear: A review. Communications in Science and Technology. 3(1), 27-35. https://doi.org/10.21924/cst.3.1.2018.75
Dayat, A. R., & Ain Banyal, N. (2018). Klasifikasi Perkembangbiakan Plasmodium Penyebab Penyakit Malaria Dalam Sel Darah Merah Manusia Dengan Menggunakan Support Vector Machine (SVM) Di Kota Jayapura-Papua. Jurnal ilmiah ILKOM, 10(1), 28–32. https://doi.org/10.33096/ilkom.v10i1.196.28-32
Elieser, E., & Iswanto, D. (2021). Kajian Tentang Hematologi Penderita Plasmodium vivax di Laboratorium Inti Farma Jayapura-Papua. Jurnal Biologi Papua, 13(1), 36–43. https://doi.org/10.31957/jbp.1363
Fantin, R. F., Abeijon, C., Pereira, D. B., Fujiwara, R. T., Bueno, L. L., & Campos-Neto, A. (2022). Proteomic Analysis of Urine from Patients with Plasmodium vivax Malaria Unravels a Unique Plasmodium vivax Protein That Is Absent from Plasmodium falciparum. Tropical Medicine and Infectious Disease, 7(10), 1-8. https://doi.org/10.3390/tropicalmed7100314
Fomene, V. (2018). Ashesi university college developing a machine learning model for malaria diagnosis in rural areas applied project. Ashesi University College : Ghana.
Guemas, E., Routier, B., Ghelfenstein-Ferreira, T., Cordier, C., Hartuis, S., Marion, B., Pasquier, G. (2024). Automatic patient-level recognition of four Plasmodium species on thin blood smear by a Real-Time Detection Transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation. Microbiology Spectrum, 12(2), 1-11. https://doi.org/10.1128/spectrum.01440-23
Hoyos, K., & Hoyos, W. (2024). Supporting Malaria Diagnosis Using Deep Learning and Data Augmentation. Diagnostics, 14(7), 1-19. https://doi.org/10.3390/diagnostics14070690
Huda, N., Dewi, A. Y., & Mahiruna, A. (2023). Plasmodium falciparum Identification Using Otsu Thresholding Segmentation Method Based on Microscopic Blood Image. Scientific Journal of Informatics, 10(4), 479-488 https://doi.org/10.15294/sji.v10i4.47924
Kasetsirikul, S., Buranapong, J., Srituravanich, W., Kaewthamasorn, M., & Pimpin, A. (2016). The development of malaria diagnostic techniques: A review of the approaches with focus on dielectrophoretic and magnetophoretic methods. Malaria Journal. 15(38), 1-14. https://doi.org/10.1186/s12936-016-1400-9
Kemenkes RI. (2024). Kurikulum Pelatihan untuk Pelatih Tata Laksana Malaria bagi Tenaga Medis di Fasilitas Pelayanan Kesehatan. Jakarta.
Marlinda, A., & Hanim, N. (2023). Analisis Kelayakan Media Pembelajaran Atlas Jamur Makroskopis Pada Materi Kingdom Fungi. In Prosiding Seminar Nasional Biotik XI. Vol. 11, pp. 81–89. Retrieved from https://jurnal.ar-raniry.ac.id/index.php/PBiotik/index
Masud, M., Alhumyani, H., Alshamrani, S. S., Cheikhrouhou, O., Ibrahim, S., Muhammad, G., Shorfuzzaman, M. (2020). Leveraging Deep Learning Techniques for Malaria Parasite Detection Using Mobile Application. Wireless Communications and Mobile Computing, 1-15. https://doi.org/10.1155/2020/8895429
Masyitha, S., Arifin, K., & Gende Ede, S. (2021). Pengembangan Media Pembelajaran Atlas Jamur Pada Materi Fungi/Jamur Untuk Kelas X SMA. Gema Pendidikan, 28(2). http://dx.doi.org/10.36709/gapend.v28i2.20053
Mautuka, Z. A., Karbeka, M., Molina, M., & Suratno, S. (2022). The Effect of Storage Time on the Quality of Immersion Oil Made from Kesambi (Scheichera Oleosa) in the Image of Onion Cell Plant. Walisongo Journal of Chemistry, 5(1), 45–52. https://doi.org/10.21580/wjc.v5i1.9338
Mawarti, L. (2017). Pengembangan Atlas Fotografi Preparat Jaringan Tumbuhan Berbiji (Spermatophyta) Sebagai Sumber Belajar (unpublished skripsi). UIN Sunan Kalijaga Yogyakarta, Yogyakarta.
Mosso, J. E., & Song, C. (2020). Distribusi prevalensi infeksi Plasmodium serta gambaran kepadatan parasit dan jumlah limfosit absolut pada penderita malaria di RSUD Kabupaten Manokwari periode Januari-Maret 2019. Tarumanagara Medical Journal 3 (1), 116-126. https://doi.org/10.24912/tmj.v3i1.9735
Noor, R., Yulis Tika, N., & Agustina, P. (2020). Preparat Jaringan Tumbuhan Dengan Menggunakan Pewarna Alami Sebagai Media Belajar Jaringan Tumbuhan Praktikum Biologi Sel. Jurnal Lentera Pendidikan Pusat Penelitian LPPM UM METRO, 5(2), 136-148. http://dx.doi.org/10.24127/jlpp.v5i2.1547
Puasa, R., Jakaria, F., Irma, & Lewa, B. Hi. (2022). Identification of Plasmodium malaria In Blood Thick Drops In Dodaga Village. Media Analis Kesehatan, 13(1). Retrieved from https://doi.org/10.32382/mak.v13i1.2595
Pusarwati, S., Ideham,B., Kusmartisnawati, Tantular, S. I., Basuki, S. ATLAS Parasitologi Kedokteran. 2018. Penerbit Buku Kedokteran EGC: Jakarta.
Purnomo and Rahmad, A. 2015. ATLAS Diagnostik Malaria. Penerbit Buku Kedokteran EGC: Jakarta.
Satoto, T.B. Pedoman Diagnostik Mikroskopis Malaria. Gadjah Mada University Press : Yogyakarta.
Shewajo, F. A., & Fante, K. A. (2023). Tile-based microscopic image processing for malaria screening using a deep learning approach. BMC Medical Imaging, 23(1), 36-45. https://doi.org/10.1186/s12880-023-00993-9
Siagian, F. E. (2024). The Use of Immersion Oil in Parasitology Light Microscopic Examination. International Journal of Pathogen Research, 13(2), 1–8. https://doi.org/10.9734/ijpr/2024/v13i2274
Slater, L., Ashraf, S., Zahid, O., Ali, Q., Oneeb, M., Akbar, M. H., Chaudhry, U. (2022). Current methods for the detection of Plasmodium parasite species infecting humans. Current Research in Parasitology and Vector-Borne Diseases. 2(22), 1-8. https://doi.org/10.1016/j.crpvbd.2022.100086
Sudaryono. 2021. Metode Penelitian : Kuantitatif, Kualitatif, dan Mix Method. PT RajaGrafindo Persada : Depok.
Tangpukdee, N., Duangdee, C., Wilairatana, P., & Krudsood, S. (2009). Malaria diagnosis: A brief review. Korean Journal of Parasitology. 47(2), 93-102. https://doi.org/10.3347/kjp.2009.47.2.93
Wang, G., Luo, G., Lian, H., Chen, L., Wu, W., & Liu, H. (2023). Application of Deep Learning in Clinical Settings for Detecting and Classifying Malaria Parasites in Thin Blood Smears. Open Forum Infectious Diseases, 10(11), 1-8. https://doi.org/10.1093/ofid/ofad469
Wongsrichanalai, C., Barcus, M. J., Muth, S., Sutamihardja, A., & Wernsdorfer, W. H. (2007). A Review of Malaria Diagnostic Tools: Microscopy and Rapid Diagnostic Test (RDT). Am. J. Trop. Med. Hyg., 77(Suppl 6), 119–127 Retrieved from www.malaria.mr4.org
Yang, A., Bakhtari, N., Langdon-Embry, L., Redwood, E., Lapierre, S. G., Rakotomanga, P., Marcos, L. A. (2019). KankaNet: An artificial neural network-based object detection smartphone application and mobile microscope as a point-of-care diagnostic aid for soil-transmitted helminthiases. PLoS Neglected Tropical Diseases, 13(8). https://doi.org/10.1371/journal.pntd.0007577
DOI: https://doi.org/10.33394/bioscientist.v12i2.13803
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia