DNA BARCODING LIBRARY DATABASE OF AQUILARIA MEMBER AND GYRINOPS MEMBER

I Gde Adi Suryawan Wangiyana

Abstract


Aquilaria and Gyrinops are the primary agarwood producer on international trade. For authentication and standardization purposes, it is essential to carry DNA barcoding studies of these genera. DNA barcoding studies on plants need a database of several regions on the plant genome that could act as a barcoding marker. These DNA barcoding markers could be divided into Chloroplasts barcoding and Nuclear barcoding. Several markers have been used for DNA barcoding study of agarwood producer species, including trnL-trnF, matK, rbcL, rpoC1, ycf1 (Chloroplast barcoding), and ITS (Nuclear barcoding). This review breakdown the availability of those DNA barcoding markers on the online genebank database for Aquilaria and Gyrinops. Aquilaria genus has 12 species members, while Gyrinops genus has six species members. The sequence of region trnL-trnF is the only barcoding marker covering all 12 species members of Aquilaria and six species members of Gyrinops. Both ITS and matK have covered nine species among 12 total species members of Aquilaria. The rbcL, rpoC1, and ycf1, respectively, have covered eight, five, and four species members of Aquilaria. Most of the barcoding markers have covered three species members of Gyrinops except for ITS (5 species) and rpoC1 (1 species). However, Gyrinops members have no ycf1 sequence on genebank database. Based on sequence availability on the genebank database, it could be concluded that the trnL-trnF region is the most promising DNA barcoding marker for the Aquilaria and Gyrinops members especially for the phylogenetic analysis purpose.

Full Text:

PDF

References


Alvarez, I. and Wendel, J. F., 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution. 29: 417 – 432.

Blaxter, M. L., 2004. The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society of London, Series B: Biological Science. 359: 669 – 679.

CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proceedings of the national academi of sciences of the United States of America. 106: 1279-12797.

Chase, M. V. And Fay, M. F. 2009. Barcoding of plants and fungi. Science. 325: 682-683.

Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y., Leon, C. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5 (1): e8613.

Cleverdon, R., Elhalaby, Y., McAlpine, M. D., Gittings, W., Ward, W. E. 2018. Total Polyphenol Content and Antioxidant Capacity of Tea Bags: Comparison of Black, Green, Red Rooibos, Chamomile and Peppermint over Different Steep Times. Beverages. 4(15): 1-13.

De Mattia, F., Bruni, I., Galimberti, A., Cattaneo, F., Casiraghi, M., Labra, M. 2010. A comparative study of differnet DNA barcoding markers for the identification of some members of Lamiacaea. Food Research International. 44 (3): 693 – 702.

Demesure, B., Sodzi, N., Petit, R. J., 1995. A Set universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast DNA in plants. Molecular Evolution. 4: 129 -131

Dong, W., Xu, C., Li, C., Sun, J., Zuo, Y., Shi, S. 2015. Ycf1, the most promising plastid DNA barcode of land plants. Sci Rep. 2015 (5): 8348

Dong, W., Xu, C., Li, C., Sun, J., Zuo, Y., Shi, S., Cheng, T., Guo, J., Zhou, S. 2015. ycf1, the most promising plastid DNA barcode of land plants. Science Report. 5: 8358.

Downie, S. R., Katz-Downie, D. S., Rogers, E. J., Zujewski, H. L., Small, E. 1998. Multiple independent losses of the plastid rpo C1 intron in Medicago (Fabaceae) as inferred from phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer sequences. Canadian Journal of Botany. 76 (5): 791 – 803.

Enan, M. R., 2015. Molecular markers for plants DNA barcoding. In: Plant DNA barcoding and Phylogenetics. Ali, M. A., Al-Hemid, F (ed.). Lambert Academic Publishing. Germany.

Eurlings, M. C. M. and Gravendeel, B. 2003. Identification of Gaharu dry wood samples using trnL-trnF polymorphisms. https://www.ncbi.nlm.nih.gov. Diakses 10 Desember 2020.

Farah, A. H., Lee, S. Y., Gao, Z., Yao, T. L., Madon, M., and Mohamed, R., 2018. Genome Size, Molecular Phylogeny, and Evolutionary History of theTribe Aquilarieae (Thymelaeaceae), the Natural Source of Agarwood. Front Plant Sci, 9: 712

Fazekas, A. J., Burgess, K. S., Kesankurti, P. R., Graham, S. W., Newmaster, S. G. Husband, B. C., Percy, D. M., Hajibabei, M., Barrett, S. C. H. 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plants species equally well. PloS ONE, 3: e2802

Feng, T., Li, Q., Wang, Y., Qiu, S., He, M., Zhang, W., Dong, J. and, Zhu, S. 2018. Phylogenetic analysis of Aquilaria Lam. (Thymelaeaceae) based on DNA barcoding. Holzforschung 73 (6): 517-524

Feng,T., Li,Q., Wang, Y., Qiu, S., He, M., Zhang, W., Dong, J., Zhu, S. 2018. The phylogenetic analysis of Aquilaria Lam. (Thymelaesceae) based on DNA barcoding. https://www.ncbi.nlm.nih.gov. Diakses 10 Desember 2020.

Hao, D. C., Huang, B. L., Chen, S. L., Mu, J. 2009. Evolution of the chloroplast trnL-trnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochem Genet. 47 (5-6): 351 – 369.

Holt, S. D.S., Horova, L., Bures, P., 2004. Indel patterns of the plastid DNA trnL-F region within the genus Poa (Poaceae). Journal of Plant Research. 117 (5): 393 – 407

Huang, X. C., Ci, X. Q., Conran, J. G., Li, J. 2015. Application of DNA Barcodes in Asian Tropical Trees - A Case Study from Xishuangbanna Nature Reserve, Southwest China. PLos ONE, 10 (6).

Jeanson, M. L., Labat, J. N., Little, D. P. 2011. DNA barcoding: a new tool for palm taxonomist.Ann Bot. 2011 (108): 1445 – 1451

Jiao, L., Yin, Y., Cheng, Y., Jiang, X. 2013. DNA barcoding for identification of the endangered species Aquilaria sinensis: comparison of data from heated or aged wood sample. Holzforschung, 68 (4): 487 – 494

Kim, S. T., Donoghue, M. J., Sultan, S. E. 2017. On the resurrection of Persicaria puritanorum (Polygonaceae). Phytotaxa, 308 (1): 20.

Kreuzer, M., Howard, C., Adhikari, B., Pendry, C. A., Hawkins, J. A. 2019. Phylogenomic Approaches to DNA Barcoding of Herbal Medicines: Developing Clade-Specific Diagnostic Characters for Berberis. Front. Plant. Sci. 10:586.

Lahaye, R., Van Der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T. G., Savolainen, V. 2008.

Lee, S. L., Zakaria, N. F., Tnah, L. H., Ng, C. H., Ng, K. K. S., Lee,C.T. 2016c. DNA Databases of a CITES listed species Aquilaria malaccensis (Thymelaeaceae) as tracking tools for forensic identification and chain -of-custody certification. https://www.ncbi.nlm.nih.gov. Diakses 10 Desember 2020.

Lee, S. Y., Ng, W. L., Mahat, M. N., Nazre, M., Mohamed, R. 2016a. DNA barcoding of the endangered Aquilaria (Thymelaeaceae) and its application in species authentication of agarwood products traded in the market. PLoS ONE. 11 (4): 1-21

Lee, S., Y. and Mohamed, R. 2016a. Rediscovery of Aquilaria rostrata (Thymelaeaceae), a species thought to be extinct, and notes on Aquilaria conservation in Peninsular Malaysia. Blumea, 61: 13-19

Lee, S.Y., Mohamed, R., Turjaman, M. 2016b. Phylogenetic Relatedness of Several Agarwood-Producing Taxa (Thymelaeaceae) from Indonesia. Tropical Life Science Research. 29 (2): 13 – 28.

Levin, R. A., Wagner, W. L., Hoch, P. C., Nepokroeff, M., Pries , J. C., Zimmer, E. A. 2003. Family-level relationship of Onagraceae based on chloroplast rbcL and ndhF data. Ann J Bot. 2003 (90): 107 – 115.

Li,Q., Yan, H., Lin, D., Wang, Y., Huang, Z., He, M., Zhang, W., Gao, X., Zhu, S., 2017. The identification of Aquilaria spp. at species level by DNA barcoding. https://www.ncbi.nlm.nih.gov. Diakses 10 Desember 2020.

Logacheva, M., Penin, A. A., Valiejo-Roman, C. M., Antonov, A. S., 2009. Structure and evolution of junctions between inverted repeat and small single copy regions of chloroplast genome in non-core Caryophyllales. Molecular Biology. 43 (5): 757 – 765.

Narayana, D. B. and Johnson, S. T. 2019. DNA barcoding in authentication of herbal raw materials, extracts and dietary supplements: a perspective. Plant Biotechnology Reports. 13 (2019): 201 – 210.

Pei, N., Lian, J. Y., Erickson, D. L., Swenson, N. G., Kress,W .J., Ye, W. H., Ge, X. J., 2011. Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci. PLoS One, 6 (6).

Sahid, M., 2014. Phylogenetic relationship of Trichoderma asperellum Tasp/8940 using Internal Transcribed Spacer (ITS) sequences. International Journal of Advanced Research . 2 (3): 979 – 986.

Salguerio, L., Martins, A. P., Correia, H. 2009. 253 - 271Raw material: importance of quality and safety a review. Flavour and Fragrance Journal. 25: 253 – 271.

Sass, C., Little, D. P., Stevenson, D. W., Specht, C. D. 2007. DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycad. PLoS One. 2007;2: e1154

Serino, G. and Maliga, P. 1998. RNA Polymerase Subunits Encoded by the Plastid rpo Genes Are Not Shared with the Nucleus-Encoded Plastid Enzyme. Plant Physiol. 117: 1165 – 1170.

Sgamma, T., Lockie-Williams, C., Kreuzer, M., Williams, S., Scheyhing, U., Koch, E., Slater, A. Howard, C. 2017. DNA barcoding for industrial quality assurance. Planta Med. 83: 1117 – 1129.

Shen,Y.J., Zhao, X., Zhao, S. J. 2007. Genetic diversity of Aquilaria spp. based on molecular marker. https://www.ncbi. nlm.nih.gov. Diakses 10 Desember 2020.

Tanaka, S. and Ito, M. 2019. DNA barcoding for identification of agarwood source species using trnL-trnF and matK DNA sequences. Journal of Natura Medicine. 74 (1): 42 – 50.

Tanaka,S. and Ito,M. 2019. DNA Bar-coding Method for discrimination origin of resin deposition sites of Agarwood using trnL-trnF region and matK region. https://www.ncbi.nlm.nih.gov. Diakses 10 Desember 2020.

Thitikornpong, W., Palanuvej, C, Ruangrungsi, N. 2018. DNA barcoding for authentication of the endangered plants in genus Aquilaria. Thai J Pharm Sci, 42, 214 – 220.

Wangiyana, I G. A. S., 2016. Phylogenetic analysis of Aquilaria and Gyrinops member based on trnL-trnF gene sequence of Chloroplast. Jurnal Sangkareang Mataram. 2 (4): 41 – 46.

Wangiyana, I G. A. S., Wanitaningsih, S. K., Sanjaya, A. 2018. Bioinduksi Gyrinops versteegii Menggunakan Inokulan Berbahan Baku Medium Tauge dengan Berbagai Kedalaman Pengeboran. Seminar Nasional Implementasi Iptek Pertanian Berkelanjutan yang Tangguh Menuju Kedaulatan Pangan. 1 (1), 144 – 152.

Wangiyana, I G. A. S. and Malik, S. 2018. Application of Arbuscular Mycorrhiza from Senaru Forest Rhizosphere for Gyrinops versteegii Germination and Growth. Biosaintifika. 10 (2): 432 – 438.

Wangiyana, I G. A. S., Triandini, I. G. A. A. H., Putradi, D., Wangiyana, W. 2018. Tannin Concentration of Gyrinops Tea from Leaves of Juvenile and Mature Agarwood Trees (Gyrinops versteegii Gilg (Domke)) with Different Processing Methods. Journal of Chemical and Pharmaceutical Research 10 (10): 113 - 119

Wangiyana, I G. A. S. and Putri, D. S. 2019. Aplikasi Zat Pengatur Tumbuh dan Kegiatan Pruning dalam Optimalisasi Budidaya Gaharu di Desa Duman Kecamatan Lingsar Lombok Barat. Lumbung Inovasi. 4 (1): 54 – 62.

Wangiyana, I G. A. S., 2019. Similarity analysis of genera Aquilaria and Gyrinops based on vegetative structure feature using different clustering method. Jurnal Sangkareang Mataram. 5 (1): 62 – 68.

Wangiyana, I G. A. S., Wanitaningish, S. K., Anggadhania, L., 2020. Pelatihan Teknologi Bio-induksi untuk Petani Gaharu di Desa Pejaring, Kabupaten Lombok Timur. Agrokreatif: Jurnal Ilmiah Pengabdian Kepada Masyarakat. 6 (1): 36 – 44.

Wangiyana, I G. A. S., Sanjaya, A., Anggadhania, L. 2020. Pengolahan Sampah Buah dan Sayur dari Pasar Induk Mandalika Kota Mataram Nusa Tenggara Barat Sebagai Media Tumbuh Fusarium sp Inokulan Gaharu. IJEEM-Indonesian Journal of Environmental Education and Management. 5 (2): 173 – 183.

White, T. J., Bruns, T., Lee, S., Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Innis, M. A., Gelfand, D. H., Sninsky J. J., White, T. J. editors. PCR protocols-a guide to methods and applications. New York: Academic Press: 315 – 322.

Win, N. W., Hanyuda, T., Arai, S., Uchimura, M., 2008. Three new records of Padina in Japan based on morphological and molecular markers. Physiological Research. 56 (4): 288 – 300.

Yu, J., Yan, H., Lu, Z., Zhou, Z. 2011. Screening potential DNA barcode regions of chloroplast coding genome for Citrus and its related genera. Scientia Agricultura Sinica. 44: 341 – 348.

Zahra, N. B., Shinwari, Z. K., Qaiser, M. 2016. DNA Barcoding: A Tool for Standardization of Herbal Medicinal Products (Hmps) Of Lamiaceae From Pakistan. Pakistan Journal of Botany . 48 (5): 2167 – 2174.




DOI: https://doi.org/10.33394/jss.v3i2.3693

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 I Gde Adi Suryawan Wangiyana