Uji Aktivitas Antibakteri Ekstrak Daun Bridelia micranth Lombok pada Escherichia coli

Faizul Bayani, Endang Sudiana, Ade Sukma Hamdani, Ida Wahyuni, Jamilul Mujaddid, Hulyadi Hulyadi

Abstract


The aim of this research is to identify the antibacterial activity of Bridelia micranth Lombok extract on the pathogenic bacteria Escherichia coli. The independent variable in this study was the concentration of Bridelia micrantha leaf extract. The concentration of Bridelia micrantha leaf extract in this study was varied from 20%, 40%, 60%, and 80%. The dependent variable is the ability of Bridelia micrantha leaf extract as an antibacterial. The antibacterial ability of Bridelia micrantha leaf extract was measured based on the diameter of the clear zone with three repetitions. As a comparison, an antibacterial is used, namely amoxicillin. Data analysis in this research was carried out descriptively, and then non-parametric tests were carried out to test the homogeneity of the data. In this study, the antibacterial ability of Bridelia micrantha leaf extract was discovered. At a concentration of 20%, the average diameter of the inhibitory zone was 2.5 mm which was categorized as none (resistance), 40% concentration was 9.83 mm in the non-existent category (resistance), 60% concentration was 13.66 in the weak category (intermediate), and at a concentration of 80% 16.5 mm is in the medium (sensitive) category. The research results indicated that Bridelia micrantha leaf extract had antibacterial activity against Escherichia coli bacteria. When compared with amoxicillin, the ability of Bridelia micrantha leaf extract as an antibacterial is still lower. Amoxicillin was able to inhibit the growth of Escherichia coli by 18.13 mm, while the highest ability of Bridelia micrantha leaf extract was 16.5 mm. Based on Ministry of Health regulations, antibacterials can be used if the inhibition zone is between 14-18 mm. So, Bridelia micrantha leaf extract can be used as an antibacterial, but it needs to be tested further before being applied to the public.

Keywords


Bridelia micrantha, Antibacterial Activity, Escherichia coli.

Full Text:

Full Paper

References


Adebayo, E. A., & Ishola, O. R. (2009). Phytochemical and Antimicrobial Screening of the Crude Extracts from the Root, Stem Bark and Leaves of Bridelia ferruginea. African Journal of Biotechnology, 8(4), 650-653. https://doi.org/10.4314/ajb.v8i4.59904

Alvarez, L. V., & Bautista, A. B. (2021). Growth and Yield Performance of Pleurotus on Selected Lignocellulosic Wastes in the Vicinity of PUP Main Campus, Philippines. Indian Journal of Science and Technology, 14(3), 259-269. https://doi.org/10.17485/IJST/v14i3.389

Angers, B., Castonguay, E., & Massicotte, R. (2010). Environmentally Induced Phenotypes and DNA Methylation: How to Deal with Unpredictable Conditions until the Next Generation and After. Molecular Ecology, 19(7), 1283-1295. https://doi.org/10.1111/j.1365-294X.2010.04580.x

Asumang, P., Boakye, Y. D., Agana, T. A., Yakubu, J., Entsie, P., Akanwariwiak, W. G., Adu, F., & Agyare, C. (2021). Antimicrobial, Antioxidant and Wound Healing Activities of Methanol Leaf Extract of Bridelia micrantha (Hochst.) Baill. Scientific African, 14, e00980. https://doi.org/10.1016/j.sciaf.2021.e00980

Bai, Z., Xu, X., Wang, C., Wang, T., Sun, C., Liu, S., & Li, D. (2022). A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. TrAC Trends in Analytical Chemistry, 152, 116646. https://doi.org/10.1016/j.trac.2022.116646

Casillas-Vargas, G., Ocasio-Malavé, C., Medina, S., Morales-Guzmán, C., del Valle, R. G., Carballeira, N. M., & Sanabria-Ríos, D. J. (2021). Antibacterial Fatty Acids: An Update of Possible Mechanisms of Action and Implications in the Development of the Next-Generation of Antibacterial Agents. Progress in Lipid Research, 82, 101093. https://doi.org/10.1016/j.plipres.2021.101093

Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26-40. https://doi.org/10.1007/s00239-019-09914-3

Cui, D., Liu, X., Hawkey, P., Li, H., Wang, Q., Mao, Z., & Sun, J. (2017). Use of and Microbial Resistance to Antibiotics in China: A Path to Reducing Antimicrobial Resistance. Journal of International Medical Research, 45(6), 1768-1778. https://doi.org/10.1177/0300060516686230

Das, B., Verma, J., Kumar, P., Ghosh, A., & Ramamurthy, T. (2020). Antibiotic Resistance in Vibrio cholerae: Understanding the Ecology of Resistance Genes and Mechanisms. Vaccine, 38, A83-A92. https://doi.org/10.1016/j.vaccine.2019.06.031

Dhingra, S., Rahman, N. A. A., Peile, E., Rahman, M., Sartelli, M., Hassali, M. A., Islam, T., Islam, S., & Haque, M. (2020). Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Frontiers in Public Health, 8, 535668. https://doi.org/10.3389/fpubh.2020.535668

Donnelly, A., Caffarra, A., Kelleher, C. T., O’Neill, B. F., Diskin, E., Pletsers, A., Proctor, H., Stirnemann, R., O’Halloran, J., Peñuelas, J., Hodkinson, T. R., & Sparks, T. H. (2012). Surviving in a Warmer World: Environmental and Genetic Responses. Climate Research, 53(3), 245-262. https://doi.org/10.3354/cr01102

Fibonacci, A., & Hulyadi. (2018). Uji Aktivitas Antimikroba Daun Sirsak (Annona muricata L.) terhadap Bacillus subtillis dan Eschericia coli. Walisongo Journal of Chemistry, 1(1), 14-17. https://doi.org/10.21580/wjc.v2i1.2669

Fu, Y., Yang, L., Zhang, J., Hu, J., Duan, G., Liu, X., Li, Y., & Gu, Z. (2021). Polydopamine Antibacterial Materials. Materials Horizons, 8(6), 1618-1633. https://doi.org/10.1039/D0MH01985B

Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., de Roo Puente, Y. J. D., Hoyos-Nogués, M., Gil, F. J., & Perez, R. A. (2021). Antibacterial Approaches in Tissue Engineering Using Metal Ions and Nanoparticles: from Mechanisms to Applications. Bioactive Materials, 6(12), 4470-4490. https://doi.org/10.1016/j.bioactmat.2021.04.033

Green, E., Obi, L. C., Samie, A., Bessong, P. O., & Ndip, R. N. (2011). Characterization of n-Hexane Sub-Fraction of Bridelia micrantha (Berth) and its Antimycobacterium Activity. BMC Complementary and Alternative Medicine, 11(1), 28. https://doi.org/10.1186/1472-6882-11-28

Gul, A., Fozia., Shaheen, A., Ahmad, I., Khattak, B., Ahmad, M., Ullah, R., Bari, A., Ali, S. S., Alobaid, A., Asmari, M. M., & Mahmood, H. M. (2021). Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Ricinus communis Leaf and Root Extracts. Biomolecules, 11(2), 206. https://doi.org/10.3390/biom11020206

Han, D., Liu, X., & Wu, S. (2022). Metal Organic Framework-Based Antibacterial Agents and Their Underlying Mechanisms. Chemical Society Reviews, 51(16), 7138-7169. https://doi.org/10.1039/D2CS00460G

Hansen, M. M., Olivieri, I., Waller, D. M., Nielsen, E. E., & Group, T. G. W. (2012). Monitoring Adaptive Genetic Responses to Environmental Change. Molecular Ecology, 21(6), 1311-1329. https://doi.org/10.1111/j.1365-294X.2011.05463.x

Irobi, O. N., Moo-Young, M., Anderson, W. A., & Daramola, S. O. (1994). Antimicrobial Activity of Bark Extracts of Bridelia ferruginea (Euphorbiaceae). Journal of Ethnopharmacology, 43(3), 185-190. https://doi.org/10.1016/0378-8741(94)90041-8

Kang, Y. -A., Kim, Y. -J., Jin, S. -K., & Choi, H. -J. (2023). Antioxidant, Collagenase Inhibitory, and Antibacterial Effects of Bioactive Peptides Derived from Enzymatic Hydrolysate of Ulva australis. Marine Drugs, 21(9), 469. https://doi.org/10.3390/md21090469

Kathare, J., Mbaria, J., Nguta, J., Moriasi, G., & Mainga, A. (2021). Antimicrobial Efficacy, Cytotoxicity, Acute Oral Toxicity, and Phytochemical Investigation of the Aqueous and Methanolic Stem Bark Extracts of Bridellia micrantha (Hochst.) Baill. Pharmacognosy Journal, 13(5), 1248-1256. https://doi.org/10.5530/pj.2021.13.158

Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiology and Biochemistry, 148, 80-89. https://doi.org/10.1016/j.plaphy.2020.01.006

Lopatkin, A. J., Bening, S. C., Manson, A. L., Stokes, J. M., Kohanski, M. A., Badran, A. H., Earl, A. M., Cheney, N. J., Yang, J. H., & Collins, J. J. (2021). Clinically Relevant Mutations in Core Metabolic Genes Confer Antibiotic Resistance. Science, 371(6531), eaba0862. https://doi.org/10.1126/science.aba0862

Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., & Gittens-St Hilaire, M. (2020). Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infection and Drug Resistance, 13, 4713-4738. https://doi.org/10.2147/IDR.S290835

Mobarki, N. S., Almerabi, B. A., & Hattan, A. H. (2019). Antibiotic Resistance Crisis. International Journal of Medicine in Developing Countries, 3(6), 561-564. https://doi.org/10.24911/IJMDC.51-1549060699

Mondal, M., Hossen, Md. S., Rahman, M. A., Saha, S., Sarkar, C., Bhoumik, N. C., & Kundu, S. K. (2021). Antioxidant Mediated Protective Effect of Bridelia tomentosa Leaf Extract Against Carbofuran Induced Oxidative Hepatic Toxicity. Toxicology Reports, 8, 1369-1380. https://doi.org/10.1016/j.toxrep.2021.07.003

Nadeem, S. F., Gohar, U. F., Tahir, S. F., Mukhtar, H., Pornpukdeewattana, S., Nukthamna, P., Moula Ali, A. M., Bavisetty, S. C. B., & Massa, S. (2020). Antimicrobial Resistance: More Than 70 Years of War Between Humans and Bacteria. Critical Reviews in Microbiology, 46(5), 578-599. https://doi.org/10.1080/1040841X.2020.1813687

Ngueyem, T. A., Brusotti, G., Caccialanza, G., & Finzi, P. V. (2009). The Genus Bridelia: A Phytochemical and Ethnopharmacological Review. Journal of Ethnopharmacology, 124(3), 339-349. https://doi.org/10.1016/j.jep.2009.05.019

Olivoto, T., Nardino, M., Carvalho, I. R., Follmann, D. N., Szareski, V. J., Ferrari, M., Pelegrin, A. J. de, & Souza, V. Q. de. (2017). Plant Secondary Metabolites and its Dynamical Systems of Induction in Response to Environmental Factors: A Review. African Journal of Agricultural Research, 12(2), 71-84. https://doi.org/10.5897/AJAR2016.11677

Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodiversity, 18(11), e2100345. https://doi.org/10.1002/cbdv.202100345

Puligundla, P., & Lim, S. (2022). Biocontrol Approaches against Escherichia coli O157:H7 in Foods. Foods, 11(5), 756. https://doi.org/10.3390/foods11050756

Sheam, M., Haque, Z., & Nain, Z. (2020). Towards the Antimicrobial, Therapeutic and Invasive Properties of Mikania micrantha Knuth: A Brief Overview. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(2), 92-101. https://doi.org/10.5455/jabet.2020.d112

Shelembe, B. G., Moodley, R., & Jonnalagadda, S. B. (2016). Secondary Metabolites Isolated from Two Medicinal Plant Species, Bridelia micrantha and Sideroxylon inerme and Their Antioxidant Activities. Acta Poloniae Pharmaceutica, 73(5), 1249-1257.

Sofiana, L., Nofisulastri., & Safnowandi. (2023). Pola Distribusi Siput Air (Gastropoda) sebagai Bioindikator Pencemaran Air di Sungai Unus Kota Mataram dalam Upaya Pengembangan Modul Ekologi. Biocaster : Jurnal Kajian Biologi, 3(3), 133-158. https://doi.org/10.36312/biocaster.v3i3.191

Tshibangu-Kabamba, E., & Yamaoka, Y. (2021). Helicobacter Pylori Infection and Antibiotic Resistance from Biology to Clinical Implications. Nature Reviews Gastroenterology & Hepatology, 18(9), 613-629. https://doi.org/10.1038/s41575-021-00449-x

Verma, N., & Shukla, S. (2015). Impact of Various Factors Responsible for Fluctuation in Plant Secondary Metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105-113. https://doi.org/10.1016/j.jarmap.2015.09.002

Vikesland, P., Garner, E., Gupta, S., Kang, S., Maile-Moskowitz, A., & Zhu, N. (2019). Differential Drivers of Antimicrobial Resistance Across the World. Accounts of Chemical Research, 52(4), 916-924. https://doi.org/10.1021/acs.accounts.8b00643

Wang, Y., Lu, J., Engelstädter, J., Zhang, S., Ding, P., Mao, L., Yuan, Z., Bond, P. L., & Guo, J. (2020). Non-Antibiotic Pharmaceuticals Enhance the Transmission of Exogenous Antibiotic Resistance Genes Through Bacterial Transformation. The ISME Journal, 14(8), 2179-2196. https://doi.org/10.1038/s41396-020-0679-2

Waubant, E., Lucas, R., Mowry, E., Graves, J., Olsson, T., Alfredsson, L., & Langer-Gould, A. (2019). Environmental and Genetic Risk Factors for MS: An Integrated Review. Annals of Clinical and Translational Neurology, 6(9), 1905-1922. https://doi.org/10.1002/acn3.50862

Wibowo, R. H., Darwis, W., Sipriyadi., Supriati, R., GS, A. A. F., & Setiawan, R. (2023). Antibacterial Activity and Phytochemical Analysis of Ethyl Acetate Extract of Mikania micrantha Kunth. Leaves from Rejang Lebong District, Bengkulu Province. AIP Conference Proceedings, 2606(1), 020010. https://doi.org/10.1063/5.0118416

Yang, L., Wen, K. -S., Ruan, X., Zhao, Y. -X., Wei, F., & Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23(4), 762. https://doi.org/10.3390/molecules23040762

Yunana, B. T., Guiyi, J. C., & Bukar, B. B. (2018). In Vitro and In Vivo Evaluation of Antibacterial Activity of Bridelia ferrugine Extracts on Some Clinical Isolates. The Journal of Phytopharmacology, 7(4), 392-398.

Zheng, D., Yin, G., Liu, M., Chen, C., Jiang, Y., Hou, L., & Zheng, Y. (2021). A Systematic Review of Antibiotics and Antibiotic Resistance Genes in Estuarine and Coastal Environments. Science of the Total Environment, 777, 146009. https://doi.org/10.1016/j.scitotenv.2021.146009




DOI: https://doi.org/10.33394/bioscientist.v11i2.9931

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia