Uji Aktivitas Antibakteri Ekstrak Daun Bridelia micranth Lombok pada Escherichia coli
Abstract
Keywords
Full Text:
Full PaperReferences
Adebayo, E. A., & Ishola, O. R. (2009). Phytochemical and Antimicrobial Screening of the Crude Extracts from the Root, Stem Bark and Leaves of Bridelia ferruginea. African Journal of Biotechnology, 8(4), 650-653. https://doi.org/10.4314/ajb.v8i4.59904
Alvarez, L. V., & Bautista, A. B. (2021). Growth and Yield Performance of Pleurotus on Selected Lignocellulosic Wastes in the Vicinity of PUP Main Campus, Philippines. Indian Journal of Science and Technology, 14(3), 259-269. https://doi.org/10.17485/IJST/v14i3.389
Angers, B., Castonguay, E., & Massicotte, R. (2010). Environmentally Induced Phenotypes and DNA Methylation: How to Deal with Unpredictable Conditions until the Next Generation and After. Molecular Ecology, 19(7), 1283-1295. https://doi.org/10.1111/j.1365-294X.2010.04580.x
Asumang, P., Boakye, Y. D., Agana, T. A., Yakubu, J., Entsie, P., Akanwariwiak, W. G., Adu, F., & Agyare, C. (2021). Antimicrobial, Antioxidant and Wound Healing Activities of Methanol Leaf Extract of Bridelia micrantha (Hochst.) Baill. Scientific African, 14, e00980. https://doi.org/10.1016/j.sciaf.2021.e00980
Bai, Z., Xu, X., Wang, C., Wang, T., Sun, C., Liu, S., & Li, D. (2022). A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. TrAC Trends in Analytical Chemistry, 152, 116646. https://doi.org/10.1016/j.trac.2022.116646
Casillas-Vargas, G., Ocasio-Malavé, C., Medina, S., Morales-Guzmán, C., del Valle, R. G., Carballeira, N. M., & Sanabria-Ríos, D. J. (2021). Antibacterial Fatty Acids: An Update of Possible Mechanisms of Action and Implications in the Development of the Next-Generation of Antibacterial Agents. Progress in Lipid Research, 82, 101093. https://doi.org/10.1016/j.plipres.2021.101093
Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26-40. https://doi.org/10.1007/s00239-019-09914-3
Cui, D., Liu, X., Hawkey, P., Li, H., Wang, Q., Mao, Z., & Sun, J. (2017). Use of and Microbial Resistance to Antibiotics in China: A Path to Reducing Antimicrobial Resistance. Journal of International Medical Research, 45(6), 1768-1778. https://doi.org/10.1177/0300060516686230
Das, B., Verma, J., Kumar, P., Ghosh, A., & Ramamurthy, T. (2020). Antibiotic Resistance in Vibrio cholerae: Understanding the Ecology of Resistance Genes and Mechanisms. Vaccine, 38, A83-A92. https://doi.org/10.1016/j.vaccine.2019.06.031
Dhingra, S., Rahman, N. A. A., Peile, E., Rahman, M., Sartelli, M., Hassali, M. A., Islam, T., Islam, S., & Haque, M. (2020). Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Frontiers in Public Health, 8, 535668. https://doi.org/10.3389/fpubh.2020.535668
Donnelly, A., Caffarra, A., Kelleher, C. T., O’Neill, B. F., Diskin, E., Pletsers, A., Proctor, H., Stirnemann, R., O’Halloran, J., Peñuelas, J., Hodkinson, T. R., & Sparks, T. H. (2012). Surviving in a Warmer World: Environmental and Genetic Responses. Climate Research, 53(3), 245-262. https://doi.org/10.3354/cr01102
Fibonacci, A., & Hulyadi. (2018). Uji Aktivitas Antimikroba Daun Sirsak (Annona muricata L.) terhadap Bacillus subtillis dan Eschericia coli. Walisongo Journal of Chemistry, 1(1), 14-17. https://doi.org/10.21580/wjc.v2i1.2669
Fu, Y., Yang, L., Zhang, J., Hu, J., Duan, G., Liu, X., Li, Y., & Gu, Z. (2021). Polydopamine Antibacterial Materials. Materials Horizons, 8(6), 1618-1633. https://doi.org/10.1039/D0MH01985B
Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., de Roo Puente, Y. J. D., Hoyos-Nogués, M., Gil, F. J., & Perez, R. A. (2021). Antibacterial Approaches in Tissue Engineering Using Metal Ions and Nanoparticles: from Mechanisms to Applications. Bioactive Materials, 6(12), 4470-4490. https://doi.org/10.1016/j.bioactmat.2021.04.033
Green, E., Obi, L. C., Samie, A., Bessong, P. O., & Ndip, R. N. (2011). Characterization of n-Hexane Sub-Fraction of Bridelia micrantha (Berth) and its Antimycobacterium Activity. BMC Complementary and Alternative Medicine, 11(1), 28. https://doi.org/10.1186/1472-6882-11-28
Gul, A., Fozia., Shaheen, A., Ahmad, I., Khattak, B., Ahmad, M., Ullah, R., Bari, A., Ali, S. S., Alobaid, A., Asmari, M. M., & Mahmood, H. M. (2021). Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Ricinus communis Leaf and Root Extracts. Biomolecules, 11(2), 206. https://doi.org/10.3390/biom11020206
Han, D., Liu, X., & Wu, S. (2022). Metal Organic Framework-Based Antibacterial Agents and Their Underlying Mechanisms. Chemical Society Reviews, 51(16), 7138-7169. https://doi.org/10.1039/D2CS00460G
Hansen, M. M., Olivieri, I., Waller, D. M., Nielsen, E. E., & Group, T. G. W. (2012). Monitoring Adaptive Genetic Responses to Environmental Change. Molecular Ecology, 21(6), 1311-1329. https://doi.org/10.1111/j.1365-294X.2011.05463.x
Irobi, O. N., Moo-Young, M., Anderson, W. A., & Daramola, S. O. (1994). Antimicrobial Activity of Bark Extracts of Bridelia ferruginea (Euphorbiaceae). Journal of Ethnopharmacology, 43(3), 185-190. https://doi.org/10.1016/0378-8741(94)90041-8
Kang, Y. -A., Kim, Y. -J., Jin, S. -K., & Choi, H. -J. (2023). Antioxidant, Collagenase Inhibitory, and Antibacterial Effects of Bioactive Peptides Derived from Enzymatic Hydrolysate of Ulva australis. Marine Drugs, 21(9), 469. https://doi.org/10.3390/md21090469
Kathare, J., Mbaria, J., Nguta, J., Moriasi, G., & Mainga, A. (2021). Antimicrobial Efficacy, Cytotoxicity, Acute Oral Toxicity, and Phytochemical Investigation of the Aqueous and Methanolic Stem Bark Extracts of Bridellia micrantha (Hochst.) Baill. Pharmacognosy Journal, 13(5), 1248-1256. https://doi.org/10.5530/pj.2021.13.158
Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiology and Biochemistry, 148, 80-89. https://doi.org/10.1016/j.plaphy.2020.01.006
Lopatkin, A. J., Bening, S. C., Manson, A. L., Stokes, J. M., Kohanski, M. A., Badran, A. H., Earl, A. M., Cheney, N. J., Yang, J. H., & Collins, J. J. (2021). Clinically Relevant Mutations in Core Metabolic Genes Confer Antibiotic Resistance. Science, 371(6531), eaba0862. https://doi.org/10.1126/science.aba0862
Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., & Gittens-St Hilaire, M. (2020). Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infection and Drug Resistance, 13, 4713-4738. https://doi.org/10.2147/IDR.S290835
Mobarki, N. S., Almerabi, B. A., & Hattan, A. H. (2019). Antibiotic Resistance Crisis. International Journal of Medicine in Developing Countries, 3(6), 561-564. https://doi.org/10.24911/IJMDC.51-1549060699
Mondal, M., Hossen, Md. S., Rahman, M. A., Saha, S., Sarkar, C., Bhoumik, N. C., & Kundu, S. K. (2021). Antioxidant Mediated Protective Effect of Bridelia tomentosa Leaf Extract Against Carbofuran Induced Oxidative Hepatic Toxicity. Toxicology Reports, 8, 1369-1380. https://doi.org/10.1016/j.toxrep.2021.07.003
Nadeem, S. F., Gohar, U. F., Tahir, S. F., Mukhtar, H., Pornpukdeewattana, S., Nukthamna, P., Moula Ali, A. M., Bavisetty, S. C. B., & Massa, S. (2020). Antimicrobial Resistance: More Than 70 Years of War Between Humans and Bacteria. Critical Reviews in Microbiology, 46(5), 578-599. https://doi.org/10.1080/1040841X.2020.1813687
Ngueyem, T. A., Brusotti, G., Caccialanza, G., & Finzi, P. V. (2009). The Genus Bridelia: A Phytochemical and Ethnopharmacological Review. Journal of Ethnopharmacology, 124(3), 339-349. https://doi.org/10.1016/j.jep.2009.05.019
Olivoto, T., Nardino, M., Carvalho, I. R., Follmann, D. N., Szareski, V. J., Ferrari, M., Pelegrin, A. J. de, & Souza, V. Q. de. (2017). Plant Secondary Metabolites and its Dynamical Systems of Induction in Response to Environmental Factors: A Review. African Journal of Agricultural Research, 12(2), 71-84. https://doi.org/10.5897/AJAR2016.11677
Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodiversity, 18(11), e2100345. https://doi.org/10.1002/cbdv.202100345
Puligundla, P., & Lim, S. (2022). Biocontrol Approaches against Escherichia coli O157:H7 in Foods. Foods, 11(5), 756. https://doi.org/10.3390/foods11050756
Sheam, M., Haque, Z., & Nain, Z. (2020). Towards the Antimicrobial, Therapeutic and Invasive Properties of Mikania micrantha Knuth: A Brief Overview. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(2), 92-101. https://doi.org/10.5455/jabet.2020.d112
Shelembe, B. G., Moodley, R., & Jonnalagadda, S. B. (2016). Secondary Metabolites Isolated from Two Medicinal Plant Species, Bridelia micrantha and Sideroxylon inerme and Their Antioxidant Activities. Acta Poloniae Pharmaceutica, 73(5), 1249-1257.
Sofiana, L., Nofisulastri., & Safnowandi. (2023). Pola Distribusi Siput Air (Gastropoda) sebagai Bioindikator Pencemaran Air di Sungai Unus Kota Mataram dalam Upaya Pengembangan Modul Ekologi. Biocaster : Jurnal Kajian Biologi, 3(3), 133-158. https://doi.org/10.36312/biocaster.v3i3.191
Tshibangu-Kabamba, E., & Yamaoka, Y. (2021). Helicobacter Pylori Infection and Antibiotic Resistance from Biology to Clinical Implications. Nature Reviews Gastroenterology & Hepatology, 18(9), 613-629. https://doi.org/10.1038/s41575-021-00449-x
Verma, N., & Shukla, S. (2015). Impact of Various Factors Responsible for Fluctuation in Plant Secondary Metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105-113. https://doi.org/10.1016/j.jarmap.2015.09.002
Vikesland, P., Garner, E., Gupta, S., Kang, S., Maile-Moskowitz, A., & Zhu, N. (2019). Differential Drivers of Antimicrobial Resistance Across the World. Accounts of Chemical Research, 52(4), 916-924. https://doi.org/10.1021/acs.accounts.8b00643
Wang, Y., Lu, J., Engelstädter, J., Zhang, S., Ding, P., Mao, L., Yuan, Z., Bond, P. L., & Guo, J. (2020). Non-Antibiotic Pharmaceuticals Enhance the Transmission of Exogenous Antibiotic Resistance Genes Through Bacterial Transformation. The ISME Journal, 14(8), 2179-2196. https://doi.org/10.1038/s41396-020-0679-2
Waubant, E., Lucas, R., Mowry, E., Graves, J., Olsson, T., Alfredsson, L., & Langer-Gould, A. (2019). Environmental and Genetic Risk Factors for MS: An Integrated Review. Annals of Clinical and Translational Neurology, 6(9), 1905-1922. https://doi.org/10.1002/acn3.50862
Wibowo, R. H., Darwis, W., Sipriyadi., Supriati, R., GS, A. A. F., & Setiawan, R. (2023). Antibacterial Activity and Phytochemical Analysis of Ethyl Acetate Extract of Mikania micrantha Kunth. Leaves from Rejang Lebong District, Bengkulu Province. AIP Conference Proceedings, 2606(1), 020010. https://doi.org/10.1063/5.0118416
Yang, L., Wen, K. -S., Ruan, X., Zhao, Y. -X., Wei, F., & Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23(4), 762. https://doi.org/10.3390/molecules23040762
Yunana, B. T., Guiyi, J. C., & Bukar, B. B. (2018). In Vitro and In Vivo Evaluation of Antibacterial Activity of Bridelia ferrugine Extracts on Some Clinical Isolates. The Journal of Phytopharmacology, 7(4), 392-398.
Zheng, D., Yin, G., Liu, M., Chen, C., Jiang, Y., Hou, L., & Zheng, Y. (2021). A Systematic Review of Antibiotics and Antibiotic Resistance Genes in Estuarine and Coastal Environments. Science of the Total Environment, 777, 146009. https://doi.org/10.1016/j.scitotenv.2021.146009
DOI: https://doi.org/10.33394/bioscientist.v11i2.9931
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia