Pengembangan Protokol Deteksi Staphylococcus aureus Berbasis Molekuler

Maharani Pertiwi Koentjoro, Melinda Nuril Alviani, Yoga Dwi Jatmiko, Laila Nur Habibah, Ahmad Nuril Fuad Al Fatih, Hartati Kartikaningsih

Abstract


Staphylococcus aureus becomes a normal flora in humans, especially on the skin and in the nose. However, if it becomes excessive or if there are pathogenic variants, it can cause various health problems. The purpose of the study is to develop a molecular-based detection method for Staphylococcus aureus using the norA primer gene. The norA gene in Staphylococcus aureus is known to play a role in pathogenesis with its antibiotic resistance ability. This type of research is analytical observational with a cross-sectional method. The methods in the study include the isolation and identification of Staphylococcus aureus from healthcare facility equipment. Isolation and identification include bacterial isolation using Blood Agar Plate (BAP) media; isolate purification, Gram staining; biochemical tests using Mannitol Salt Agar (MSA) media, glucose tests, Voges Proskauer (VP) tests, catalase tests, and coagulase tests. Furthermore, S. aureus isolates were tested using a molecular-based method, namely Polymerase Chain Reaction (PCR). This method includes DNA isolation stages, qualitative testing with agarose gel electrophoresis, semi-quantitative testing with image J software, amplification with Real-Time Polymerase Chain Reaction (RT-PCR) using norA gene primers. The Mann-Whitney test results gave a value of p = 0.334 (p> 0.05) indicating the suitability between the culture method and the PCR method with the developed protocol in detecting Staphylococcus aureus. The developed method includes the use of base sequences in the norA gene primer, optimization of annealing and extension temperatures, and the concentration of DNA templates used.


Keywords


Staphylococcus aureus, Culture Method, Polymerase Chain Reaction (PCR), NorA Gene.

Full Text:

Full Paper

References


Awan, F., Ali, M. M., Mushtaq, M. H., & Ijaz, M. (2021). Genetic Diversity in Staphylococcus aureus and its Relation to Biofilm Production. London: IntechOpen.

Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and Virulence of Staphylococcus aureus. Virulence, 12(1), 547-569. https://doi.org/10.1080/21505594.2021.1878688

Dalton, K. R., Rock, C., Carroll, K. C., & Davis, M. F. (2020). One Health in Hospitals: How Understanding the Dynamics of People, Animals, and the Hospital Built-Environment Can be Used to Better Inform Interventions for Antimicrobial-Resistant Gram-Positive Infections. Antimicrob Resist Infect Control, 9(1), 1-17. https://doi.org/10.1186/s13756-020-00737-2

Elisa, J. M., Raineri, R., Altulea, D., & Dijl, J. M. (2022). Staphylococcal Trafficking and Infection-from ‘Nose to Gut’ and Back. FEMS Microbiology Reviews, 46(1), 1-22. https://doi.org/10.1093/femsre/fuab041

Howden, B. P., Giulieri, S. G., Lung T. W. F., Baines, S. L., Sharkey, L. K., Lee, J. Y. H., Hachani, A., Monk, I. R., & Stinear, T. P. (2023). Staphylococcus aureus Host Interactions and Adaptation. Nature Reviews Microbiology, 21(1), 380-395. https://doi.org/10.1038/s41579-023-00852-y

Huang, L., Wu, C., Gao, H., Xu, C., Dai, M., Huang, L., Hao, H., Wang, X., & Cheng, G. (2022). Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics, 11(4), 1-18. https://doi.org/10.3390/antibiotics11040520

Javid, F., Taku, A., Bhat, M. A., Badroo, G. A., Mudasir, M., & Sofi, T. A. (2018). Molecular Typing of Staphylococcus aureus Based on Coagulase Gene. Veterinary World, 11(4), 423-430. https://doi.org/10.14202/vetworld.2018.423-430

Khan, H. A., Baig, F. K., & Mehboob, R. (2017). Nosocomial Infections: Epidemiology, Prevention, Control and Surveillance. Asian Pacific Journal of Tropical Biomedicine, 7(5), 478-482. https://doi.org/10.1016/j.apjtb.2017.01.019

Koentjoro, M. P., Wilujeng, H. S., Dilla, A., & Prasetyo, E. N. (2021). Modifikasi Metode Isolasu DNA Cetyl Trimethyl Ammonium Bromide (CTAB) untuk Sampel Epitel Pipi Manusia. Journal of Indonesian Medical Laboratory and Science, 2(2), 115-127. https://doi.org/10.53699/joimedlabs.v2i2.54

Lee, A., de Lencastre, H., Garau, J., Kluytmans, J., Kumar, S. M., Peschel, A., & Harbarth, S. (2018). Methicillin-Resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4(1), 1-23. https://doi.org/10.1038/nrdp.2018.33

Liu, Y., Zhang, J., & Ji, Y. (2016). PCR-Based Approaches for the Detection of Clinical Methicillin-Resistant Staphylococcus aureus. The Open Microbiology Journal, 10(1), 45-56. https://doi.org/10.2174/1874285801610010045

Mansour, N. A., Loubet, P., Pouget, C., Remy, C. D., Sotto, A., Lavigne, J. P., & Molle V. (2021), Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins, 13(10), 1-22. https://doi.org/10.3390/toxins13100677

McClure, J. A., Conly, J. M., Obasuyi, O., Ward, L., Torres, A. U., Louie, T., & Zhang, K. (2020). A Novel Assay for Detection of Methicillin-Resistant Staphylococcus aureus Directly from Clinical Samples. Frontiers in Microbiology, 11(1), 1-16. https://doi.org/10.3389/fmicb.2020.01295

Mesa, L. E., Manrique, R., Muskus, C., & Robledo, S. M. (2020). Test Accuracy of Polymerase Chain Reaction Methods Against Conventional Diagnostic Techniques for Cutaneous Leishmaniasis (CL) in Patients with Clinical or Epidemiological Suspicion of CL: Systematic Review and Meta-Analysis. PLOS Neglected Tropical Diseases, 14(1), 1-15. https://doi.org/10.1371/journal.pntd.0007981

Nieman, A. E., Rozemeijer, W., Savelkoul, P. H. M., & Schade, R. P. (2022). Bacterial DNA Load in Staphylococcus aureus Bacteremia is Significantly Higher in Intravascular Infections. PLoS ONE, 17(4), 1-9. https://doi.org/10.1371/journal.pone.0266869

Nurlan, N., Fitriadi, I., Safnowandi, S., Lukitasari, D., & Suadi, T. (2023). Sosialisasi Perilaku Hidup Bersih dan Sehat serta Pemahaman Deteksi Dini Gejala Coronavirus Disease 2019 (Covid-19). Nuras : Jurnal Pengabdian Kepada Masyarakat, 3(2), 72-78. https://doi.org/10.36312/nuras.v3i2.184

Obermeier, M., Pacenti, M., Ehret, R., Onelia, F., Gunson, R., Goldstein, E., Chevaliez, S., Vilas, A., Glass, A., Maree, L., Krügel, M., Knechten, H., Braun, P., Naeth, G., Azzato, F., Danijela Lucic, D., Marlowe, N., Palm, M. J., Pfeifer, K., Reinhardt, B., Dhein,J., Joseph, A. M., Martínez-García, L., & Juan-Carlos Galán, J. C. (2020). Improved Molecular Laboratory Productivity by Consolidation of Testing on the New Random-Access Analyzer Alinity M. Journal of Laboratory Medicine, 44(6), 319-328. https://doi.org/10.1515/labmed-2020-0102

Suleyman, G., Alangaden, G., & Bardossy, A. C. (2018). The Role of Environmental Contamination in the Transmission of Nosocomial Pathogens and Healthcare-Associated Infections. Current Infectious Disease Reports, 20(1), 1-11. https://doi.org/10.1007/s11908-018-0620-2

Tarigan, G. E., Nawan, N., & Toemon, A. I. (2023). Identification and Resistance Testing of Bacteria Causing Nosocomial Infections in Surgery Inpatient Rooms. Disease Prevention and Public Health Journal, 17(1), 100-108. https://doi.org/10.12928/dpphj.v17i1.6875

Tolera, M., Abate, D., Dheresa, M., & Marami, D. (2018). Bacterial Nosocomial Infections and Antimicrobial Susceptibility Pattern among Patients Admitted at Hiwot Fana Specialized University Hospital, Eastern Ethiopia. Hindawi : Advance in Medicine, 2018, 1-7. https://doi.org/10.1155/2018/2127814

Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Jr, V. G. F. (2015). Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clinical Microbiology Reviews, 28(3), 603-661. https://doi.org/10.1128/CMR.00134-14

Wagenlehner, F. M. E., & Dittmar, F. (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. European Urology, 82(6), 658-668. https://doi.org/10.1016/j.eururo.2022.08.023

Willis, J. A., Cheburkanov, V., Chen, S., Soares, J. M., Kassab, G., Blanco, K. C., Bagnato, V. S., de Figueiredo, P., & Yakovlev, V. V. (2022). Breaking Down Antibiotic Resistance in Methicillin-Resistant Staphylococcus Aureus: Combining Antimicrobial Photodynamic and Antibiotic Treatments. PNAS, 119(36), 1-8. https://doi.org/10.1073/pnas.2208378119

Xiao, P., Liu, J., Yang, X., Wang, Y., Chen, W., Wang, C., Liu, Q., Shen, Q., Lu, G., & Yan, G. (2022). Multi-Site Infection by Methicillin-Resistant Staphylococcus Aureus in a Six-Year Old Girl: A Case Report. BMC Infectious Diseases, 22(1), 1-6. https://doi.org/10.1186/s12879-022-07148-1

Yu, X. H., Hao, Z. H., Liu, P. L., Liu, M. M., Zhao, L. L., & Zhao, X. (2022). Increased Expression of Efflux Pump Nora Drives the Rapid Evolutionary Trajectory from Tolerance to Resistance Against Ciprofloxacin in Staphylococcus aureus. Antimicrob Agents Chemother, 66(12), 1-14. https://doi.org/10.1128/aac.00594-22




DOI: https://doi.org/10.33394/bioscientist.v12i1.9494

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia