Efek Perbedaan Temperatur terhadap Aktivitas Tripsin-Like dan Amilase Digesti Ikan Lunjar (Rasbora lateristriata Blkr.)

Fadhna Alunka Majid, Untung Susilo, Eko Setio Wibowo, Yulia Sistina

Abstract


Previous studies related to digestive enzyme activity have been carried out, but there is no information related to the effect of temperature on the trypsin-like activity and digestive amylase in Rsbora lateristriata. Therefore, the purpose of this study was to determine the effect of temperature differences on the activity of trypsin-like and amylase digestion of Rasbora lateristriata fish. The temperature treatments applied were 20, 30, 40, 50, 60, and 70ºC and each treatment was repeated five times. A total of 125 Rasbora fish with a body weight of 0.81 ± 0.09 grams were used in this study. Trypsin-like and amylase activities were measured using a spectrophotometer. The results showed that there were significant differences (p < 0.05) in the trypsin-like and amylase activities at different temperatures. The trypsin-like activity was not significantly different (p < 0.05) between 20-50ºC, but the activity was lower at 60-70ºC. Amylase activity at 30°C and 40°C was not significantly different (p < 0.05), but significantly different from 20, 50, 60, and 70°C. In conclusion, trypsin-like decreased activity at 60°C and amylase at 50°C.


Keywords


Amylase, Rasbora, Temperature, Tripsin-Like.

Full Text:

Full Paper

References


Abe, K., Yuan, C., Kumagai, Y., and Kishimura, H. (2020). The Potential of Freshwater Fish Viscus from Silver Carp Hypophthalmichthys molitrix for Trypsin Source. Waste and Biomass Valorization, 11(1), 3971-3978.

Aissaoui, N., Marzouki, M.N., and Abidi, F. (2017). Purification and Biochemical Characterization of a Novel Intestinal Protease from Scorpaena notata. International Journal of Food Properties, 20(2), 2151-2165.

Banerjee, G., and Ray, A.K. (2018). The Effect of Seasonal Temperatur on Endogenous Gut Enzyme Activity in Four Air-Breathing Fish Species. Croatian Journal of Fisheries, 76(2), 60-65.

Bowyer, J.N., Booth, M.A., Qin, J.G., D'Antignana, T., Thomson, M.J., and Stone, D.A. (2014). Temperatur and Dissolved Oxygen Influence Growth and Digestive Enzyme Activities of Yellowtail Kingfish Seriola lalandi (Valenciennes, 1833). Aquaculture Research, 45(12), 2010-2020.

Candiotto, F.B., Júnior, A.C.V.F., Neri, R.C.A., Bezerra, R.S., Rodrigues, R.V., Sampaio, L.A., and Tesser, M.B. (2018). Characterization of Digestive Enzymes from Captive Brazilian Flounder Paralichthys orbignyanus. Brazilian Journal of Biology, 78(1), 281-288.

Cárdenas, L.M., Quintana, C.A.F., González, C.A.A., Martínez, L.D.J., García, R.M., Almeida, O.U.H., and Palafox, J.T.P. (2020). Partial Characterization of Digestive Proteases in Juveniles of Microphis brachyurus (Short-Tailed Pipefish) (Syngnathiformes: Syngnathidae). Neotropical Ichthyology, 18(2), 1-15.

Chaijaroen, T., and Thongruang, C., (2016). Extraction, Characterization, and Activity of Digestive Enzyme from Nile Tilapia (Oreochromis niloticus) Viscera Waste. International Food Research Journal, 23(4), 1432-1438.

Champasri, C., and Champasri, T. (2017). Biochemical Characterization, Activity Comparison and Isoenzyme Analysis of Amylase and Alkaline Proteases in Seven Cyprinid Fishes. Journal of Fisheries and Aquatic Science, 12(6), 264-272.

Champasri, C., Phetlum, S., and Pornchoo, C. (2021). Diverse Activities and Biochemical Properties of Amylase and Proteases from Six Freshwater Fish Species. Scientific Reports, 11(1), 1-11.

Charu, B., and Ragini, G. (2020). Optimization and Characterization of Trypsin of Labeo rohita from its Visceral Waste. GSC Advanced Research and Reviews, 3(2), 39-47.

Debnath, S., Maiti, S.I., and Saikia, S.K. (2020). pH and Temperatur Dependent Gut Enzyme Niche in a Stomachless Herbivorous Freshwater Fish Amblypharyngodon mola (Hamilton, 1822). Journal of Scientific Research, 12(4), 729-741.

Dhara, P.K., Elavarasan, K., and Shamasundar, B.A. (2017). Isolation of Crude Proteases from Freshwater Fishes Catla catla and Labeo rohita: Optimizing the Hydrolysis Conditions of Crude Proteases. Int. J. Pure App. Biosci, 5(1), 667-673.

Félix, M.L.G., Rodríguez, C.D.L.R., and Velazquez, M.P. (2020). Partial Characterization, Quantification, and Optimum Activity of Trypsin and Lipase from the Sciaenids Cynoscion othonopterus, Cynoscion parvipinnis and Cynoscion xanthulus. Archives of Biological Sciences, 72(1), 81-93.

Gangadhar, B., Sridhar, N., Umalatha, H., Ganesh, H., Simon, A.R.T., and Jayasankar, P. (2017). Digestibility and Digestive Enzyme Activity in Labeo fimbriatus (Bloch, 1795) Fed Periphyton Grown on Sugarcane Bagasse. Indian Journal of Fisheries, 64(1), 37-43.

Gutiérrez, E.V., Othón, C.A.M., Velazquez, M.V., and Félix, M.L.G. (2020). Activity and Partial Characterization of Trypsin, Chymotrypsin, and Lipase in the Digestive Tract of Totoaba macdonaldi. Journal of Aquatic Food Product Technology, 29(4), 1-13.

Jiang, X., Dong, S., Liu, R., Huang, M., Dong, K., Ge, J., Gao, Q., and Zhou, Y. (2021). Effects of Temperatur, Dissolved Oxygen, and Their Interaction on the Growth Performance and Condition of Rainbow Trout (Oncorhynchus mykiss). Journal of Thermal Biology, 98(1), 1-8.

Júnior, A.C.F., Costa, H.M., Icimoto, M.Y., Hirata, I.Y., Marcondes, M., Carvalho J.L.B., and Bezerra, R.S. (2012). Giant Amazonian Fish Pirarucu (Arapaima gigas): its Viscera as a Source of Thermostable Trypsin. Food chemistry, 133(4), 1596-1602.

Kanno, G., Klomklao, S., Kumagai, Y., and Kishimura, H. (2019). A Thermostable Trypsin from Freshwater Fish Japanese Dace (Tribolodon hakonensis): a Comparison of the Primary Structures Among Fish Trypsins. Fish physiology and biochemistry, 45(1), 561-571.

Khandagale, A.S., Mundodi, L., and Sarojini, B.K. (2017). Isolation and Characterization of Trypsin from Fish Viscera of Oil Sardine (Sardinella longiceps). Int J Fish Aquat Stud, 5(1), 33-37.

Khangembam, B.K., and Chakrabarti, R. (2015). Trypsin from the Digestive System of Carp Cirrhinus mrigala: Purification, Characterization and its Potential Application. Food chemistry, 175(1), 386-394.

Kumaladewi, P., Mufasirin, Lastuti, N.D.R., Alamsjah, M.A., Darmanto, W., dan Andriyono, S. (2022). Morphometric and Meristic Analysis of Rasbora in East Java Province. Journal of Aquaculture and Fish Health, 11(3), 298-305.

Mazumder, S.K., Das, S.K., Rahim, S.M., and Ghaffar, M.A. (2018). Temperatur and Diet Effect on the Pepsin Enzyme Activities, Digestive Somatic Index and Relative Gut Length of Malabar Blood Snapper (Lutjanus malabaricus Bloch & Schneider, 1801). Aquaculture Reports, 9(1), 1-9.

Pujante, I.M., López, M.D., Mancera, J.M., and Moyano, F.J. (2016). Characterization of Digestive Enzymes Protease and alpha-Amylase Activities in The Thick-Lipped Grey Mullet (Chelon labrosus, Risso 1827). Aquaculture Research, 48(2), 367-376.

Rahile, B.S., Nagarnaik, K.B., Bangadkar, M.K., and Ingle, P.P. (2020). Effect of pH and Temperatur Variation on the Amylase Activity of the Fish Clarias batrachus. Vidyabharati International Interdisciplinary Research Journal, 12(1), 67-77.

Santos, C.W.V.D., Marques, M.E.D.C., Tenório, H.DA., Miranda, E.C.D., and Pereira, H.J.V. (2016). Purification and Characterization of Trypsin from Luphiosilurus alexandri Pyloric Cecum. Biochemistry and Biophysics Reports, 8(1), 29-33.

Sun, Z., Xia, S., Feng, S., Zhang, Z., Rahman, M.M., Rajkumar, M., and Jiang, S. (2015). Effects of Water Temperatur on Survival, Growth, Digestive Enzyme Activities, and Body Composition of the leopard Coral Grouper Plectropomus leopardus. Fisheries Science, 81(1), 107-112.

Suryani, S.A.M.P., Kawan, I.M., dan Arya, I.W. (2020). Keragaman Morfologi Ikan Nyalian (Rasbora lateristriata B.) pada Habitat yang Berbeda. In Proceedings of the 2nd Warmadewa Research and Development Seminar (WARDS) (pp. 1-6). Denpasar, Indonesia: Universitas Warmadewa.

Susilo, U., Rachmawati, F.N., Wibowo, E.S., Pradhyaningrum, R.R., Okthalina, K., dan Mulyani, M.N.A. (2022). Digestive Enzyme Activities in Barred Loach (Nemacheilus fasciatus, Val., 1846.): Effect of pH and Temperatur. Molekul, 17(2), 219-228.

Susilo, U., Sukardi, P., dan Affandi, R., (2016). Alkaline Protease, Amylase and Cellulase Activities of Yellow Rasbora, Rasbora lateristriata Blkr., at Different Feeding Levels. Molekul, 11(2), 190-201.

Torrissen, K.R. (2014). Atlantic Salmon, Salmo salar L.: Food Utilization, Protein Growth Efficiency and Maturation. New York, USA: Nova Science Publishers, Inc.

Vannabun, A., Ketnawa, S., Phongthai, S., Benjakul, S., and Rawdkuen, S. (2014). Characterization of Acid and Alkaline Proteases from Viscera of Farmed Giant Catfish. Food Bioscience, 6(1), 9-16.

Volkoff, H., and Rønnestad, I. (2020). Effects of Temperatur on Feeding and Digestive Processes in Fish. Temperatur, 7(4), 1-43.

Zulfadhli, Z., Wijayanti, N., dan Retnoaji, B. (2016). Perkembangan Ovarium Ikan Wader Pari (Rasbora lateristriata Bleeker, 1854): Pendekatan Histologi. Jurnal Perikanan Tropis, 3(1), 32-39.




DOI: https://doi.org/10.33394/bioscientist.v11i1.7659

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia