Exploration of Indole Acetic Acid (IAA) Producing Fungi from Non-organic Carrot Rhizosphere as Biostimulant
Abstract
This study aimed to isolate and characterize fungi from the rhizosphere of carrots grown in non-organic systems that potentially produce indole-3-acetic acid (IAA), and to evaluate their biostimulatory potential in supporting environmentally friendly agriculture. The methods employed included rhizospheric sample collection from non-organic carrot fields, fungal isolation and purification using PDA media, morphological identification, as well as qualitative screening and spectrophotometric quantification of IAA production using Salkowski reagent. The results revealed six fungal isolates capable of producing IAA, namely Rhizopus stolonifer, Rhizopus oryzae, Trichoderma longibrachiatum, Trichothecium roseum, Pythium aphanidermatum, and Pythium inflatum, with varying levels of IAA production. Among these, R. oryzae produced the highest IAA concentration at 46.8 ppm, followed by P. aphanidermatum (41.8 ppm), T. longibrachiatum (27.3 ppm), P. inflatum (24.5 ppm), R. stolonifer (18.4 ppm), and T. roseum (17.9 ppm). These findings suggest that rhizospheric fungi from the non-organic carrot rhizosphere hold promising potential as IAA-producing bioagents to support sustainable and environmentally friendly agricultural practices.
Keywords
Full Text:
PDFReferences
Adedayo, A. A., & Babalola, O. O. (2023). Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. In Journal of Fungi (Vol. 9, Issue 2). MDPI. https://doi.org/10.3390/jof9020239
Anchundia, M., León-Revelo, G., Santacruz, S., & Torres, F. (2024). Polyphasic identification of Rhizopus oryzae and evaluation of physical fermentation parameters in potato starch processing liquid waste for β-glucan production. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-66000-5
Anderson, H. M., Cagle, G. A., Majumder, E. L. W., Silva, E., Dawson, J., Simon, P., & Freedman, Z. B. (2024). Root exudation and rhizosphere microbial assembly are influenced by novel plant trait diversity in carrot genotypes. Soil Biology and Biochemistry, 197. https://doi.org/10.1016/j.soilbio.2024.109516
Aqeel, M., Ran, J., Hu, W., Irshad, M. K., Dong, L., Akram, M. A., Eldesoky, G. E., Aljuwayid, A. M., Chuah, L. F., & Deng, J. (2023). Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. Chemosphere, 318. https://doi.org/10.1016/j.chemosphere.2023.137924
Ardiani, I., A’yun, Q., & Nazua, K. S. (2024). Variations in Rhizopus Species That Play a Role in Making Tempeh in the Bekasi Area. Jurnal Biology Science & Education, 13(1), 10–18.
Asghar, W., Craven, D. K., Swenson, J. R., Kataoka, R., Mahmood, A., & Farias, J. G. (2025). Enhancing the Resilience of Agroecosystems Through Improved Rhizosphere Processes: A Strategic Review. International Journal of Molecular Sciences, 109(26), 1–29.
Ashwathi, S., Ushamalini, C., Parthasarathy, S., & Nakkeeran, S. (2017). Morphological, pathogenic and molecular characterisation of Pythium aphanidermatum: A causal pathogen of coriander damping-off in India. The Pharma Innovation Journal, 6(11), 44–48. www.thepharmajournal.com
Ayaz, M., Li, C. H., Ali, Q., Zhao, W., Chi, Y. K., Shafiq, M., Ali, F., Yu, X. Y., Yu, Q., Zhao, J. T., Yu, J. W., Qi, R. De, & Huang, W. K. (2023). Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives. In Molecules (Vol. 28, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/molecules28186735
Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell and Environment, 32(6), 666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
Bagwan, N. B. (2010). Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integerated management of soil borne diseases of soybean [Glycine max (L.) Merril]. In International Journal of Plant Protection (Vol. 3, Issue 2).
Barnett, H. L., & Hunter, B. B. (1987). Illustrated Genera of Imperfect Fungi (4th ed). Macmillan Pub. Co.
Bay, G., Lee, C., Chen, C., Mahal, N. K., Castellano, M. J., Hofmockel, K. S., & Halverson, L. J. (2021). Agricultural Management Affects the Active Rhizosphere Bacterial Community Composition and Nitrification. MSystems, 6(5). https://doi.org/10.1128/mSystems
Bissett, J. (1984). A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Canadian Journal of Botany, 62(5), 924–931. https://doi.org/10.1139/b84-131
Brockett, B. F. T., Prescott, C. E., & Grayston, S. J. (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 44(1), 9–20. https://doi.org/10.1016/j.soilbio.2011.09.003
Chandra, P. B., Ingle, R. W., & Tetali, S. (2016). Compatibility of Phosphate Solubilizing Microorganisms with Different Agrochemicals. Plant Archieves, 16(1), 229–232.
Chauhan, P., Sharma, N., Tapwal, A., Kumar, A., Verma, G. S., Meena, M., Seth, C. S., & Swapnil, P. (2023). Soil Microbiome: Diversity, Benefits and Interactions with Plants. In Sustainability (Switzerland) (Vol. 15, Issue 19). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/su151914643
Cookson, W. R., Osman, M., Marschner, P., Abaye, D. A., Clark, I., Murphy, D. V., Stockdale, E. A., & Watson, C. A. (2007). Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry, 39(3), 744–756. https://doi.org/10.1016/j.soilbio.2006.09.022
Domsch, K. H., Gams, W., & Anderson, T.-H. (1980). Compendium of Soil Fungi. In European Journal of Soil Science (Vol. 59, Issue 5). Academic Press. https://doi.org/https://doi.org/10.1111/j.1365-2389.2008.01052_1.x
El-Maraghy, S. S., Tohamy, A. T., & Hussein, K. A. (2021). Plant protection properties of the Plant Growth-Promoting Fungi (PGPF): Mechanisms and potentiality. Current Research in Environmental and Applied Mycology, 11, 391–415. https://doi.org/10.5943/CREAM/11/1/29
Etesami, H., & Glick, B. R. (2024). Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiological Research, 281. https://doi.org/10.1016/j.micres.2024.127602
Fess, T. L., & Benedito, V. A. (2018). Organic versus conventional cropping sustainability: A comparative system analysis. In Sustainability (Switzerland) (Vol. 10, Issue 1). MDPI. https://doi.org/10.3390/su10010272
Gusmiaty, M Restu, A., & Payangan, R. Y. (2019). Production of IAA (Indole Acetic Acid) of the rhizosphere fungus in the Suren community forest stand. IOP Conference Series: Earth and Environmental Science, 343(1). https://doi.org/10.1088/1755-1315/343/1/012058
Hartmann, M., Frey, B., Mayer, J., Mäder, P., & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal, 9(5), 1177–1194. https://doi.org/10.1038/ismej.2014.210
Hossain, Md. M., & Sultana, F. (2020). Application and Mechanisms of Plant Growth Promoting Fungi (PGPF) for Phytostimulation. In S. K. Das (Ed.), Organic Agriculture. IntechOpen. https://doi.org/10.5772/intechopen.92338
Imaningsih, W., Rahayu, N. D., & Hakim, S. S. (2021). Endophytes and rhizosphere fungi from galam (melaleuca cajuputi powell.) which has the potential to produce indole acetic acid (IAA). Journal of Tropical Biodiversity and Biotechnology, 6(2). https://doi.org/10.22146/JTBB.61594
Iqbal, S., Begum, F., Nguchu, B. A., Claver, U. P., & Shaw, P. (2025). The invisible architects: microbial communities and their transformative role in soil health and global climate changes. In Environmental Microbiome (Vol. 20, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40793-025-00694-6
Jambon, I., Thijs, S., Weyens, N., & Vangronsveld, J. (2018). Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. Journal of Plant Interactions, 13(1), 119–130. https://doi.org/10.1080/17429145.2018.1441450
Kumar, V., Verma, D. K., Pandey, A. K., & Srivastava, S. (2019). Trichoderma spp.: Identification and Characterization for Pathogenic Control and its Potential Application. In Microbiology for Sustainable Agriculture, Soil Health, and Environmental Protection (pp. 223–258). Apple Academic Press. https://doi.org/10.1201/9781351247061-5
Larekeng, S. H., Gusmiaty, Restu, M., Tunggal, A., & Susilowati, A. (2019). Isolation and identification of rhizospheric fungus under Mahoni (Swietenia mahagoni) stands and its ability to produce IAA (Indole Acetid Acid) hormones. IOP Conference Series: Earth and Environmental Science, 343(1). https://doi.org/10.1088/1755-1315/343/1/012051
Lehmann, T., Hoffmann, M., Hentrich, M., & Pollmann, S. (2010). Indole-3-acetamide-dependent auxin biosynthesis: A widely distributed way of indole-3-acetic acid production? In European Journal of Cell Biology (Vol. 89, Issue 12, pp. 895–905). https://doi.org/10.1016/j.ejcb.2010.06.021
Li, M., Guo, R., Yu, F., Chen, X., Zhao, H., Li, H., & Wu, J. (2018). Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium arthrobacter pascens zz21. International Journal of Molecular Sciences, 19(2). https://doi.org/10.3390/ijms19020443
Liu, Q., Chen, Q., Liu, H., Du, Y., Jiao, W., Sun, F., & Fu, M. (2024). Rhizopus stolonifer and related control strategies in postharvest fruit: A review. In Heliyon (Vol. 10, Issue 8). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2024.e29522
Matthews, V. D. (1932). Studies on the Genus Pythium. Nature, 130(3280), 384. https://doi.org/10.1038/130384c0
Nam, B., & Choi, Y. J. (2019). Phytopythium and Pythium Species (Oomycota) Isolated from Freshwater Environments of Korea. Mycobiology, 47(3), 261–272. https://doi.org/10.1080/12298093.2019.1625174
Noor, A., Ziaf, K., Naveed, M., Khan, K. S., Ghani, M. A., Ahmad, I., Anwar, R., Siddiqui, M. H., Shakeel, A., & Khan, A. I. (2023). L-Tryptophan-Dependent Auxin-Producing Plant-Growth-Promoting Bacteria Improve Seed Yield and Quality of Carrot by Altering the Umbel Order. Horticulturae, 9(9). https://doi.org/10.3390/horticulturae9090954
Noviyanti, N., Purwantisari, S., & Suprihadi, A. (2024). Isolation of Potential Antagonistic Rhizosphere Fungi against Alternaria alternata from Organic Carrot Productions. Jurnal Perlindungan Tanaman Indonesia, 28(1), 58. https://doi.org/10.22146/jpti.94840
Oh, S. Y., Nam, K. W., & Yoon, D. H. (2014). Identification of Acremonium acutatum and Trichothecium roseum isolated from grape with white stain symptom in Korea. Mycobiology, 42(3), 269–273. https://doi.org/10.5941/MYCO.2014.42.3.269
Omotayo, O. P., & Babalola, O. O. (2021). Resident rhizosphere microbiome’s ecological dynamics and conservation: Towards achieving the envisioned Sustainable Development Goals, a review. In International Soil and Water Conservation Research (Vol. 9, Issue 1, pp. 127–142). International Research and Training Center on Erosion and Sedimentation and China Water and Power Press. https://doi.org/10.1016/j.iswcr.2020.08.002
Patten, C. L., Blakney, A. J. C., & Coulson, T. J. D. (2013). Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. In Critical Reviews in Microbiology (Vol. 39, Issue 4, pp. 395–415). https://doi.org/10.3109/1040841X.2012.716819
Plaats-Niterink, A. J. Van Der. (1981). Monograph of the Genus Pythium (Vol. 21). Studies in Mycology.
Ramatsitsi, M. N., Khosa, M. C., Mashamaite, C. V., & Ramachela, K. (2023). In Vitro Assessment of Eight Selected Indigenous Fungal Isolates Tolerance to Various Abiotic Stresses and their Effects on Seed Germination. Current Microbiology, 80(12). https://doi.org/10.1007/s00284-023-03507-6
Rifai, A. (1969). A revision of the genus Trichoderma (Vol. 116). Mycological Papers.
Roopa, S., Mishra, T., Bhattacharya, S., Bhadra, A., Singh, S. R., Shrivastava, R., & Patil, S. J. (2023). Role of IAA In Plant Growth, Development, And Interaction With Other Phytohormones. Section A-Research Paper, 12(5), 5293–5297.
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., & Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4(10), 1340–1351. https://doi.org/10.1038/ismej.2010.58
Samson, R. A., Houbraken, J., & Thrane, U. (2010). Food and indoor fungi: Second Edition. (2nd ed). CBS-KNAW Fungal Biodiversity Centre.
Sari, S. L. A., Tanjung, W. P., Amilia, K. R., Setyaningsih, R., & Pangastuti, A. (2024). Pectinase Production by Rhizopus stolonifer A3 Isolated from Apple Peels. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 10–21. https://doi.org/10.20961/carakatani.v39i1.77610
Sharma, B., Tiwari, S., Kumawat, K. C., & Cardinale, M. (2023). Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. In Science of the Total Environment (Vol. 860). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2022.160476
Sharma, M., Devi, S., Manorma, K., Kesta, K., Chand, S., Sharma, R., Tomar, M., & Gupta, M. (2024). Chapter 18 - Plant growth-promoting fungi: a tool for agriculturally important industrial production. In R. Pratap Singh, G. Manchanda, S. Sarsan, A. Kumar, & H. Panosyan (Eds.), Microbial Essentialism (pp. 393–418). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-13932-1.00016-7
Solomon, W., Janda, T., & Molnár, Z. (2024). Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture. In Plant Physiology and Biochemistry (Vol. 206). Elsevier Masson s.r.l. https://doi.org/10.1016/j.plaphy.2023.108290
Srivastava, P. K., Shenoy, B. D., Gupta, M., Vaish, A., Mannan, S., Singh, N., Tewari, S. K., & Tripathi, R. D. (2012). Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties. Microbes and Environments, 27(4), 477–482. https://doi.org/10.1264/jsme2.ME11316
Suebrasri, T., Harada, H., Jogloy, S., Ekprasert, J., & Boonlue, S. (2020). Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere, 16. https://doi.org/10.1016/j.rhisph.2020.100271
Swamy, M. K., Sayeed Akhtar, M., & Sinniah, U. R. (2016). Root exudates and their molecular interactions with rhizospheric microbes. In Plant, Soil and Microbes: Volume 2: Mechanisms and Molecular Interactions (pp. 59–77). Springer International Publishing. https://doi.org/10.1007/978-3-319-29573-2_4
Teale, W. D., Paponov, I. A., & Palme, K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 7(11), 847–859. https://doi.org/10.1038/nrm2020
Tharanath, A. C., Upendra, R. S., & Rajendra, K. (2024). Soil Symphony: A Comprehensive Overview of Plant–Microbe Interactions in Agricultural Systems. In Applied Microbiology (Switzerland) (Vol. 4, Issue 4, pp. 1549–1567). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/applmicrobiol4040106
Watanabe, T. (2010). Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species (3rd ed). CRC Press.
Yang, C.-H., & Crowley, D. E. (2000). Rhizosphere Microbial Community Structure in Relation to Root Location and Plant Iron Nutritional Status. In APPLIED AND ENVIRONMENTAL MICROBIOLOGY (Vol. 66, Issue 1). https://journals.asm.org/journal/aem
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M., Herbold, C. W., Eichorst, S. A., Woebken, D., Richter, A., & Wanek, W. (2019). Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 136. https://doi.org/10.1016/j.soilbio.2019.107521
DOI: https://doi.org/10.33394/bioscientist.v13i2.15620
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia