Micropopagation of Cryptocarya massoy (Oken) Kosterm. Trough Optimizing Callus Induction with Benzylaminopurine (BAP) Supplementation

Muhammad Hanafi, Zozy Aneloi Noli, M. Idris, Iga Permata Hany

Abstract


This study aimed to evaluate the effect of BAP concentrations on explant response and callus formation in Massoia. The experiment was arranged in a Completely Randomized Design (CRD) with three BAP concentrations: 0.5 mg/L, 1.0 mg/L, and 1.5 mg/L, each with 24 replications. The culture medium used was Murashige and Skoog (MS), and observations were carried out for 7 days after planting. Parameters observed included the percentage of viable explants, browning, contamination, average callus formation, callus color, and texture. Data were analyzed using analysis of variance (ANOVA) at a 5% significance level. The results showed that 0.5 mg/L BAP yielded the highest explant survival rate (54%), the lowest browning rate (13%), and 35% contamination. Meanwhile, 1.5 mg/L BAP produced the highest average callus formation (0.21) with compact texture and brown coloration. Although not statistically significant, BAP concentrations affected explant viability and callus formation. A concentration of 0.5 mg/L tended to be optimal for maintaining explant viability, while 1.5 mg/L was more effective in inducing callus. These findings provide a preliminary basis for optimizing Massoia tissue culture techniques.


Keywords


In vitro; massoia; massoialactone; mikropropagasi; sitokinin

Full Text:

PDF

References


Andaryani, S., Samanhudi, S., & Yunus, A. (2022). Effect of BAP and 2,4-D on callus induction of Jatropha curcas in vitro. Cell Biology and Development, 3(2). https://doi.org/10.13057/cellbioldev/v030202

Anjani, D. D., & Ratnawati. (2023). The Effect of BAP and NAA Combination on Callus Induction of Aglaonema Siam Aurora Leaf Explants in vitro. Indonesian Journal of Bioscience (IJOBI), 1(2), 85–92. https://doi.org/10.21831/ijobi.v1i2.213

Aprilia, M., Setiari, N., & Nurchayati, Y. (2022). Callus Development from Potato (Solanum tuberosum) Stem at Various Concentrations of Benzylaminopurine. Biosaintifika, 14(2). https://doi.org/10.15294/biosaintifika.v14i2.35703

Darwo, D., & Yeny, I. (2018). Penggunaan Media, Bahan Stek, Dan Zat Pengatur Tumbuh Terhadap Keberhasilan Stek Masoyi (Cryptocarya massoy (Oken) Kosterm). Jurnal Penelitian Hutan Tanaman, 15(1). https://doi.org/10.20886/jpht.2018.15.1.43-55

Espinosa-Leal, C. A., Puente-Garza, C. A., & García-Lara, S. (2018). in vitro plant tissue culture: means for production of biological active compounds. In Planta (Vol. 248, Issue 1). https://doi.org/10.1007/s00425-018-2910-1

Graf, M., & Stappen, I. (2022). Beyond the Bark: An Overview of the Chemistry and Biological Activities of Selected Bark Essential Oils †. In Molecules (Vol. 27, Issue 21). https://doi.org/10.3390/molecules27217295

Gusmiaty, Restu, M., Larekeng, S. H., & Setiawan, E. (2020). The optimization of in vitro micropropagation of betung bamboo (Dendrocalamus asper backer) by medium concentrations and plant growth regulators. IOP Conference Series: Earth and Environmental Science, 575(1). https://doi.org/10.1088/1755-1315/575/1/012024

Hailu, A., Sbhatu, D. B., & Abraha, H. B. (2020). in vitro Micropropagation of Industrially and Medicinally Useful Plant Aloe trichosantha Berger Using Offshoot Cuttings. Scientific World Journal, 2020. https://doi.org/10.1155/2020/3947162

Hassen, N. I., Badaluddin, N. A., Mustapha, Z., & Zawaw, D. D. (2022). Identification and Prevention of Microbial Contaminants in Musa paradisiaca Tissue Culture. Malaysian Applied Biology, 51(5). https://doi.org/10.55230/mabjournal.v51i5.2374

Hutapea, F. J., Kuswandi, R., & Asmoro, J. P. (2020). Potensi Dan Sebaran Masoi (Cryptocarya massoy) Di Papua Barat. Jurnal Penelitian Kehutanan Faloak, 4(1), 57–70. https://doi.org/10.20886/jpkf.2020.4.1.57-70

Hutapea Jontara, F., Kuswandi, R., & Asmoro, J. P. (2020). Potensi Dan Sebaran Masoi (Cryptocarya massoy) Di Kabupaten Teluk Bintuni Dan Kabupaten Kaimana. Jurnal Penelitian Kehutanan, 2(2).

Lestari, K. dwipayani, Ni Wayan Deswiniyanti, Ida Ayu Astarini, & Luh Made Arpiwi. (2019). Callus and shoot induction of leaf culture Lilium longiflorum with NAA and BAP. Nusantara Bioscience, 11(2). https://doi.org/10.13057/nusbiosci/n110209

Lu, H., Xu, P., Hu, K., Xiao, Q., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., & Shen, J. (2020). Transcriptome profiling reveals cytokinin promoted callus regeneration in Brassica juncea. Plant Cell, Tissue and Organ Culture, 141(1). https://doi.org/10.1007/s11240-020-01779-5

Majumder, S., & Rahman, M. M. (2016). Effect of different plant growth regulators on in vitro propagation of Clausena heptaphylla (Roxb.): An aromatic and medicinal shrub. ~ 58 ~ Journal of Pharmacognosy and Phytochemistry, 5(3), 58–63.

Mayerni, R., Satria, B., Wardhani, D. K., & Chan, S. (2020). Effect of auxin (2,4-D) and cytokinin (BAP) in callus induction of local patchouli plants (Pogostemon cablin Benth.). IOP Conference Series: Earth and Environmental Science, 583(1). https://doi.org/10.1088/1755-1315/583/1/012003

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Noli, Z.A., Hanafi, M., Idris, M., dan Hany, I.P., 2024. Effect of Kinetin Concentration on Callus Induction of Cryptocarya massoy (Oken) Kosterm Under in vitro Conditions. Jurnal Biologi Tropis, 24(1b): 532–539. https://doi.org/10.29303/jbt.v24i1b.8162

Park, J. M., & Kim, W. S. (2020). Cytokinin promotes fast maturation and mass propagation of the moss Brachythecium plumosum. Acta Horticulturae, 1291. https://doi.org/10.17660/ActaHortic.2020.1291.25

Patuhai, A., Wahab, P. E. M., Yusoff, M. M., Dewir, Y. H., Alsughayyir, A., & Hakiman, M. (2023). Plant Growth Regulator- and Elicitor-Mediated Enhancement of Biomass and Andrographolide Production of Shoot Tip-Culture-Derived Plantlets of Andrographis paniculata (Burm.f.) Wall. (Hempedu Bumi). Plants, 12(16). https://doi.org/10.3390/plants12162953

Polivanova, O. B., & Bedarev, V. A. (2022). Hyperhydricity in Plant Tissue Culture. In Plants (Vol. 11, Issue 23). https://doi.org/10.3390/plants11233313

Rahman, N., Rosli, R., Kadzimin, S., & Hakiman, M. (2019). Auxin and Cytokinin Effects on Callus Induction in Catharanthus roseus (L.) G. Don. Fundamental and Applied Agriculture, 0. https://doi.org/10.5455/faa.54779

Shahzad, A., Parveen, S., Sharma, S., Shaheen, A., Saeed, T., Yadav, V., Akhtar, R., Ahmad, Z., & Upadhyay, A. (2017). Plant tissue culture: Applications in plant improvement and conservation. In Plant Biotechnology: Principles and Applications. https://doi.org/10.1007/978-981-10-2961-5_2

Sharma, N., & Kathayat, K. (2021). Plant tissue culture in horticultural crops: A review. Journal of Pharmacognosy and Phytochemistry, 10(1).

Triatmoko, B., Hertiani, T., & Yuswanto, A. (2016). Sitotoksisitas Minyak Mesoyi (Cryptocarya massoy) terhadap Sel Vero. Jurnal Pustaka Kesehatan, 4(2).

Wahyuni, A., Satria, B., & Zainal, A. (2020). Induksi Kalus Gaharu dengan NAA dan BAP Secara in vitro. Agrosains : Jurnal Penelitian Agronomi, 22(1). https://doi.org/10.20961/agsjpa.v22i1.36007

Wibisono, Y., Putri, A.I., Hadiyan, Y., Haryjanto, L., Hakim, L., Sumardi, Yeny, I. and Utomo, P.M. 2021. Effect of axenic culture and NAA in vitro on masoyi (Cryptocarya massoy (Oken) Kosterm) seeds regeneration. IOP Conf. Ser.: Earth Environ. Sci. 914 012016: 1-8. https://doi.org/10.1088/1755-1315/914/1/012016




DOI: https://doi.org/10.33394/bioscientist.v13i2.13852

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia