Protein Content Analysis of Protease Enzymes Extracted from Ficus Species and Papaya Using Qubit Fluorometer

Ismed Ismed, Rina Yenrina, Hasbullah Hasbullah, Daimon Syukri, Yusniwati Yusniwati

Abstract


This study aims to quantify the protein content in crude ficin enzymes obtained from the fruit and latex of various Ficus species and Papaya. This research has been encouraged by the considerable potential of these enzymes in different biotechnological applications, while data with regard to the protein content of these enzymes is limited. This study used a quantitative approach using qubit fluorometer to quantify the protein content in crude enzymes derived from the fruit and latex of these plants. Based on results, the protein content in crude ficin enzymes, two types of research obtained from Ficus aurata (Miq.) fruit was 0.92µg/ml and from papaya fruit as 3.16 µg/ml. For latex, it was observed that the protein content in crude ficin enzymes was determined as 6.14 µg/ml for Ficus aurata (Miq.), 2.58 µg/ml for Ficus racemosa L., and 5,27 µg/ml for Ficus padana Burm.f.. The protein content from papaya latex was 15,98 µg/ml. These findings show the differences in the protein content of the enzymes obtained from different species of Ficus and Papaya as a basis for further study on using these enzymes for biotechnological purposes.

Keywords


protein, enzyme, ficin, papain, qubit fluorometer

Full Text:

PDF

References


Aïder, M. (2021). Potential Applications of Ficin in the Production of Traditional Cheeses and Protein Hydrolysates. JDS Communications, 2(5), 233–237. https://doi.org/10.3168/jdsc.2020-0073

Annaházi, A., Schröder, A., & Schemann, M. (2021). Region‐specific Effects of the Cysteine Protease Papain on Gastric Motility. Neurogastroenterology & Motility, 33(7). https://doi.org/10.1111/nmo.14105

Baidamshina, D. R., Koroleva, V., Olshannikova, S., Trizna, E. Y., Bogachev, M. I., Artyukhov, V. G., … Kayumov, A. R. (2021). Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain. Marine Drugs, 19(4), 197. https://doi.org/10.3390/md19040197

Bian, J., Ou, S., Xu, L., Mai, W., Ye, M., Gu, H., … Liu, K. (2019). Comparative Proteomic Analysis Provides Novel Insights Into the Regulation Mechanism Underlying Papaya (Carica Papaya L.) Exocarp During Fruit Ripening Process. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-1845-4

Dafoe, J. T., Huang, F., & Yang, T. C. (2017). Quantitative Analysis of AntiHevea Brasiliensis Antibody Cross-Reactivity Against Taraxacum Kok-Saghyz Latex Proteins Demonstrates Significantly Reduced Antibody Recognition. Journal of Biotechnology & Biomaterials, 07(03). https://doi.org/10.4172/2155-952x.1000270

Damgaard, T., Otte, J., Meinert, L., Jensen, K., & Lametsch, R. (2014). Antioxidant Capacity of Hydrolyzed Porcine Tissues. Food Science & Nutrition, 2(3), 282–288. https://doi.org/10.1002/fsn3.106

Derardja, A. eddine, Pretzler, M., Kampatsikas, I., Barkat, M., & Rompel, A. (2019). Inhibition of Apricot Polyphenol Oxidase by Combinations of Plant Proteases and Ascorbic Acid. Food Chemistry X, 4, 100053. https://doi.org/10.1016/j.fochx.2019.100053

Elder, S., Klumpp‐Thomas, C., Yasgar, A., Travers, J., Frebert, S., Wilson, K., … Michael, S. (2021). Cross-Platform Bayesian Optimization System for Autonomous Biological Assay Development. https://doi.org/10.1101/2021.06.23.448246

Fatmawati, N., Zulfiana, Y., & Handayani, S. (2023). Use of Papaya Fruit (Carica Papaya L) as a Stunting Prevention Effort. Journal for Quality in Public Health, 6(2), 380–383. https://doi.org/10.30994/jqph.v6i2.457

Fh, L., Sy, W., Foo, H. L., Loh, T. C., Mohamad, R., Rahim, A. A., & Zulkifli, I. (2019). Comparative Study of Extracellular Proteolytic, Cellulolytic, and Hemicellulolytic Enzyme Activities and Biotransformation of Palm Kernel Cake Biomass by Lactic Acid Bacteria Isolated From Malaysian Foods. International Journal of Molecular Sciences, 20(20), 4979. https://doi.org/10.3390/ijms20204979

Gagaoua, M., Boucherba, N., Bouanane-Darenfed, A., Ziane, F., Nait-Rabah, S., Hafid, K., & Boudechicha, H. R. (2014). Three-phase partitioning as an efficient method for the purification and recovery of ficin from Mediterranean fig (Ficus carica L.) latex. Separation and Purification Technology, 132. https://doi.org/10.1016/j.seppur.2014.05.050

Gagaoua, M., Hoggas, N., & Hafid, K. (2015). Three Phase Partitioning of Zingibain, a Milk-Clotting Enzyme From Zingiber Officinale Roscoe Rhizomes. International Journal of Biological Macromolecules, 73, 245–252. https://doi.org/10.1016/j.ijbiomac.2014.10.069

Ghanbari, R., Zarei, M., Ebrahimpour, A., Hamid, A. A., Ismail, A., & Saari, N. (2015). Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga Lecanora) Hydrolysates. International Journal of Molecular Sciences, 16(12), 28870–28885. https://doi.org/10.3390/ijms161226140

Giangrieco, I., Ciardiello, M. A., Tamburrini, M., Tuppo, L., Rafaiani, C., Mari, A., & Alessandri, C. (2023). Comparative Analysis of the Immune Response and the Clinical Allergic Reaction to Papain-Like Cysteine Proteases From Fig, Kiwifruit, Papaya, Pineapple and Mites in an Italian Population. Foods, 12(15), 2852. https://doi.org/10.3390/foods12152852

Juwita, R. (2023). Papaya Fruit Processing as Meat Tenderizer in Ponggok Village, Blitar. Journal of Saintech Transfer, 6(1), 46–50. https://doi.org/10.32734/jst.v6i1.11044

Klaude, M., Mori, M., Tjäder, I., Gustafsson, T., Wernerman, J., & Rooyackers, O. (2011). Protein Metabolism and Gene Expression in Skeletal Muscle of Critically Ill Patients With Sepsis. Clinical Science, 122(3), 133–142. https://doi.org/10.1042/cs20110233

Kumar, V., Sharma, N., Souza, I. C. da C., Ramos, M. V, & Carvalho, C. P. da S. (2014). Proteins Derived From in Vitro Culture of the Callus and Roots of Calotropis Procera Ameliorate Acute Inflammation in the Rat Paw. Applied Biochemistry and Biotechnology, 175(3), 1724–1731. https://doi.org/10.1007/s12010-014-1361-9

Lim, Y. H., Foo, H. L., Loh, T. C., Mohamad, R., & Abdullah, N. (2019). Comparative Studies of Versatile Extracellular Proteolytic Activities of Lactic Acid Bacteria and Their Potential for Extracellular Amino Acid Productions as Feed Supplements. Journal of Animal Science and Biotechnology, 10(1). https://doi.org/10.1186/s40104-019-0323-z

Macalood, J. S., Vicente, H., Boniao, R., Gorospe, J. G., & Roa, E. C. (2013). Chemical Analysis of &Amp;lt;i>Carica Papaya</I> L. Crude Latex. American Journal of Plant Sciences, 04(10), 1941–1948. https://doi.org/10.4236/ajps.2013.410240

Majdinasab, M., Aminlari, L., Aminlari, M., & Niakosari, M. (2010). Effect of Actinidin on the Solubility and SDS-Page Pattern of Soymilk Proteins. Journal of Food Biochemistry, 34(6), 1172–1185. https://doi.org/10.1111/j.1745-4514.2010.00357.x

Marković, S., Milošević, J., Djuric, M., Lolić, A., & Polović, N. (2021). One-Step Purification and Freeze Stability of Papain at Acidic pH Values. Archives of Biological Sciences, 73(1), 57–64. https://doi.org/10.2298/abs201217001m

Meza-Espinoza, L., Vivar-Vera, M. A., García-Magaña, M. de L., Sáyago‐Ayerdi, S. G., Chacón-López, A., Becerrea-Verdín, E. M., & Montalvo‐González, E. (2017). Enzyme Activity and Partial Characterization of Proteases Obtained From Bromelia Karatas Fruit and Compared With Bromelia Pinguin Proteases. Food Science and Biotechnology. https://doi.org/10.1007/s10068-017-0244-6

Mótyán, J. A., Tóth, F., & Tőzsér, J. (2013). Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules, 3(4), 923–942. https://doi.org/10.3390/biom3040923

Murthy, M. G. K., & Rao, K. P. (2018). Formulation and Evaluation of Medicated Derma Sticks of Ficus Racemosa for Management of Infectious Skin Diseases. Pharmaceutical and Biosciences Journal, 46–49. https://doi.org/10.20510/ukjpb/6/i3/175592

Olaokun, O. O., McGaw, L. J., Eloff, J. N., & Naidoo, V. (2013). Evaluation of the Inhibition of Carbohydrate Hydrolysing Enzymes, Antioxidant Activity and Polyphenolic Content of Extracts of Ten African Ficus Species (Moraceae) Used Traditionally to Treat Diabetes. BMC Complementary and Alternative Medicine, 13(1). https://doi.org/10.1186/1472-6882-13-94

Phupaboon, S., Hashim, F. J., Phumkhachorn, P., & Rattanachaikunsopon, P. (2023). Molecular and Biotechnological Characteristics of Proteolytic Activity From &Lt;i>Streptococcus Thermophilus</I> As a Proteolytic Lactic Acid Bacteria to Enhance Protein-Derived Bioactive Peptides. Aims Microbiology, 9(4), 591–611. https://doi.org/10.3934/microbiol.2023031

Prabha, A., & Modgil, R. (2018). Comparative Nutritional Quality Evaluation of Different Cultivars of Papaya. Asian Journal of Dairy and Food Research, 37(02). https://doi.org/10.18805/ajdfr.dr-1299

Rusmadi, N. N. N. N., Shahari, R., Amri, C. N. A. C., Tajudin, N. S., & Mispan, M. R. (2020). Nutritional Value of Selected Edible Ficus Fruit in Kuantan. Journal of Tropical Life Science, 10(1), 11–14. https://doi.org/10.11594/jtls.10.01.02

Serio-Silva, J. C., Rico-Gray, V., Salazar, L. T. H., & Espinosa-Gómez, R. (2002). The Role of Ficus (Moraceae) in the Diet and Nutrition of a Troop of Mexican Howler Monkeys, Alouatta Palliata Mexicana, Released on an Island in Southern Veracruz, Mexico. Journal of Tropical Ecology, 18(6), 913–928. https://doi.org/10.1017/s0266467402002596

Soares, E. de A., Werth, E. G., Madroñero, J., Ventura, J. A., Rodrigues, S. P., Hicks, L. M., & Fernandes, P. M. B. (2017). Label-Free Quantitative Proteomic Analysis of Pre-Flowering PMeV-infected Carica Papaya L. Journal of Proteomics, 151, 275–283. https://doi.org/10.1016/j.jprot.2016.06.025

Souza, P. M., Bittencourt, M. L. de A., Caprara, C. C., Freitas, M. M. de, Almeida, R. P. C. de, Silveira, D., … Magalhães, P. O. (2015). A Biotechnology Perspective of Fungal Proteases. Brazilian Journal of Microbiology, 46(2), 337–346. https://doi.org/10.1590/s1517-838246220140359

Srisai, P., Lin, H.-C., Liu, C.-C., Zeng, F.-J., Yang, Y.-C., & Chou, W. (2022). Thermostable Ficin From Jelly Fig (Ficus Pumila Var. Awkeotsang) Latex: Purification, Identification and Characterization. Journal of the Science of Food and Agriculture, 103(2), 846–855. https://doi.org/10.1002/jsfa.12196

Sun, J., Wang, M., Cao, J., & Zhao, Y. (2010). Characterization of Three Novel Alkaline Serine Proteases From Tomato (Lycopersicum Esculentum Mill.) Fruit and Their Potential Application. Journal of Food Biochemistry, 34(5), 1014–1031. https://doi.org/10.1111/j.1745-4514.2010.00346.x

Toe, C. J., Foo, H. L., Loh, T. C., Mohamad, R., Rahim, R. A., & Zulkifli, I. (2019). Extracellular Proteolytic Activity and Amino Acid Production by Lactic Acid Bacteria Isolated From Malaysian Foods. International Journal of Molecular Sciences, 20(7), 1777. https://doi.org/10.3390/ijms20071777

Tsado, A. N., Gboke, J. A., Ibrahim, H. M., Gana, D., Nathaniel, D., Muhammad, A. I., … Zubairu, R. (2021). Production and Partial Characterization of Protease From Pseudomonas Aeruginosa and Bacillus Subtilis Isolated From Domestic Waste Dumpsite, 01(01), 26–33. https://doi.org/10.53858/arocpb01012633

Volf, M., Segar, S. T., Miller, S. E., Isua, B., Sisol, M., Aubona, G., … Novotný, V. (2017). Community Structure of Insect Herbivores Is Driven by Conservatism, Escalation and Divergence of Defensive Traits in Ficus. Ecology Letters, 21(1), 83–92. https://doi.org/10.1111/ele.12875




DOI: https://doi.org/10.33394/bioscientist.v12i2.13683

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia