Respons Pertumbuhan Rimpang Bangle (Zingiber purpureum) Pada Perlakuan PGPR (Plant Growth Promoting Rhizobacteria)

Singgih Tri Wardana, Wulan Fransisca Mangandi, Harmida Harmida, Doni Setiawan

Abstract


Bangle (Zingiber purpureum Rosc.) is one of the species of the Zingiberaceae family that has medicinal properties. Secondary metabolites contained in bangle rhizomes have biological activity as antioxidants, anti-inflammatory, anticancer, anti-asthma, anti-aging, neuroprotective, antimicrobial. Environmentally friendly technological innovation to increase soil nutrient content and plant growth in sustainable plant cultivation efforts is by utilizing plant growth-promoting rhizobacteria (PGPR). This study aims to determine the effect of PGPR concentration on the growth of bangle rhizomes. This study was conducted at the Physiology and Development Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, Sriwijaya University. A completely randomized study design was used with five PGPR concentration treatments (0; 75; 125; 175; and 225 ppm). Data were analyzed by Analysis of Variance (Anova) and Duncan's Multiple Range Test (DMRT). The study showed that PGPR treatment can increase the growth of bangle rhizomes compared to no PGPR treatment. The best results at a PGPR concentration of 175 ppm in increasing the growth of bangle rhizomes.

Keywords


Zingiber purpureum, growth, rhizome, PGPR

Full Text:

PDF

References


Backer R, Rokem J. S., Ilangumaran G., Lamont J., Praslickova D., & Ricci E. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9(1):1473. https://doi.org/10.3389/fpls.2018.01473

Chieb, M. & Gachomo, E.W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biol, 23 (407). https://doi.org/10.1186/s12870-023-04403-8

Emery R.J.N. & Kisiala A. (2020). The Roles of Cytokinins in Plants and Their Response to Environmental Stimuli. Plants. 9(9):1158. https://doi.org/10.3390/plants9091158

Goswami D., Thakker J. N., & Dhandhukia P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture. 2(1):1127500. https://doi.org/10.1080/23311932.2015.1127500

Han A-R, Kim H, Piao D, Jung C-H, Seo E. K. (2021). Phytochemicals and Bioactivities of Zingiber cassumunar Roxb. Molecules. 26(8): 2377 Doi:10.3390/molecules26082377

Jabborova D., Enakiev Y., Sulaymanov K., Kadirova D., Ali A., Annapurna K. (2021). Plant growth promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Journal Plant Science Today. 8(1):66-71. https://doi.org/10.14719/pst.2021.8.1.997

Jeyanthi V., Kanimozhi S. (2018). Plant Growth Promoting Rhizobacteria (PGPR) – Prospective and Mechanisms: A Review. J Pure Appl Microbiol. 12(2):733-749. doi: https://doi.org/10.22207/JPAM.12.2.34

Kumar S, Diksha, Sindhu S. S., Kumar R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences. 3(1):1000942022. doi: 10.1016/j.crmicr.2021.100094

Le T. H., Nguyen N. K. T., Nguyen M. T. T., Nguyen N. T. Two new phenylbutenoids from the rhizomes of cassumunar ginger and their α-glucosidase inhibitory activity. Nat Prod Res. 2022 28:1-8. DOI: 10.1080/14786419.2022.2157826

Masclaux-Daubresse C., Daniel-Vedele F., Dechorgnat J., Chardon F., Gaufichon L., & Suzuki A. (2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann . Bot. 105(7):1141–1157. https://doi.org/10.1093/aob/mcq028

Mektrirat R, Yano T, Okonogi S, Katip W, Pikulkaew S. (2020). Phytochemical and Safety Evaluations of Volatile Terpenoids from Zingiber cassumunar Roxb. on Mature Carp Peripheral Blood Mononuclear Cells and Embryonic Zebrafish. Molecules. 25(3): 613. https://doi.org/10.3390/molecules25030613

Pirttilä A. M., Tabas H. M. P., Baruah N., & Koskimäki J. J. (2021). Biofertilizers and biocontrol agents for agriculture: How to identify and develop new potent microbial strains and traits. Microorganisms. 9(4): 817. https://doi.org/10.3390/microorganisms9040817

Roychoudhry S & Kepinski S. (2022). Auxin in root development. Cold Spring Harb Perspect Biol. 14(4): a039933. doi : 10.1101/cshperspect.a039933

Sharma R., Dahiya A., Sindhu S. S. (2018). Harnessing Proficient Rhizobacteria to Minimize the Use of Agrochemicals. Int.J.Curr.Microbiol.App.Sci.. 7(10): 3186-3197. https://doi.org/10.20546/ijcmas.2018.710.369

Singh I. (2018). Plant growth promoting rhizobacteria (PGPR) and their various mechanisms for plant growth enhancement in stressful conditions: A review. Journal European of Biological Research. 8(4): 191-213. http://dx.doi.org/10.5281/zenodo.1455995

Song Y., Li Z., Liu J., Zou Y., Lv C, & Chen F. (2021). Evaluating the impacts of Azotobacter chroococcum inoculation on soil stability and plant property of maize crop. J. Soil Sci. Plant Nutr. 21(1): 824–831. https://doi.org/10.1007/s42729-020-00404-w

Thorat J. C. & More A. L. (2022). The effect of chemical fertilizers on environment and human health. International Journal of Scientific Development and Research. 7(2): 99- 105. https://www.ijsdr.org/viewpaperforall.php?paper=IJSDR2202016

Wardana S. T. (2023). Ethnomedicinal approach of zingiberaceae in traditional medicine of the Kerinci tribe, Jambi, Indonesia. International Journal of Biology Research, 8(2): 5-7.

Wardana S. T., Arnida., Juswardi., Tanzerina N., & Harmida. (2023). Growth responses of white turmeric (Curcuma zedoaria Rosc.) rhizome on plant growth promoting rhizobacteria treatment. International Journal of Agriculture and Plant Science. 5(3): 69-73.

Wardana, S. T., Juswardi, & Rama, N. L. A. (2021). Respons pertumbuhan rimpang Jahe Merah (Zingiber officinale Var. Rubrum) pada perendaman auksin dan PGPR (Plant Growth Promoting Rhizobacteria). Sriwijaya Bioscientia. 2(2): 53–58. https://doi.org/10.24233/sribios.2.2.2021.354

Zaheer M.S., Ali H.H., Iqbal M.A., Erinle K.O., Javed T., Iqbal J., Hashmi M.I.U., Mumtaz M.Z., Salama E.A.A., Kalaji H.M., Wróbel J. & Dessoky E.S. (2022) Cytokinin Production by Azospirillum brasilense Contributes to Increase in Growth, Yield, Antioxidant, and Physiological Systems of Wheat (Triticum aestivum L.). Front. Microbiol. 13: 886041. doi 10.3389/fmicb.886041




DOI: https://doi.org/10.33394/bioscientist.v12i2.13142

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia