Isolation and Identification of Bacteria Producing Antibiotic Compounds from The Rhizosphere of Avicennia Marina Against Pathogenic Bacteria in The Mangrove Ecosystem Area of West Kalimantan

Yuyun Nisaul Khairillah, Hasria Alang, Haryanto Haryanto, Fitriagustiani Fitriagustiani, Indri Erwhani, Ditha Astuti Purnamawati, Annisa Rahmawati, Surtikanti Surtikanti, Adelia Triwahyuni

Abstract


Antibiotic resistance is a global problem in the health sector. The level of antibiotic resistance that occurs can be caused by several influencing factors, including 6 isolates of rhizosphere bacteria that were successfully isolated from the rhizosphere of the Avicenia marina plant. The purpose of this study was to isolate and determine the best minimum inhibitory concentration of rhizosphere bacteria of the A. marina plant and its effectiveness in inhibiting pathogenic bacteria S. aureus. This study is a quantitative research method using the isolation and characterization of rhizosphere bacteria, antagonistic test of rhizosphere bacteria and test of the results of the extraction of filtrate of rhizosphere bacteria culture of A. marina plants. The results of this study were (1) five of the isolates of bacteria that were successfully isolated were included in the Bacilus type and 1 isolate of bacteria included in the Cocobasil type; (2) there were 3 of the 6 isolates that could inhibit the growth of pathogenic bacteria S. aureus with an inhibition range of 10.04-4.42 mm; (3) Rhizosphere bacterial isolate (TN 1) is an isolate with the best inhibition diameter and is categorized as strong, namely 10.04 mm; (4) ethyl acetate extract of Rhizosphere bacterial isolate culture filtrate (TN 1), has a minimum inhibitory concentration of 0.50% against pathogenic bacteria S.aureus with an inhibition diameter of 7.18 mm which is better when compared to the positive control using chloramphenicol.


Keywords


active compounds, rhizosphere bacteria, pathogen

Full Text:

PDF

References


Basumatary, B. (2021). Isolation and characterization of endophytic bacteria from tomato foliage and their in vitro efficacy against root-knot nematodes, 53, 1–16. https://doi.org/10.21307/jofnem-2021-104

Behera, B. C., Singdevsachan, S. K., Mishra, R. R., Sethi, B. K., Dutta, S. K., & Thatoi, H. N. (2016). Phosphate Solubilising Bacteria from Mangrove Soils of Mahanadi River Delta, Odisha, India. World Journal of Agricultural Research, Vol. 4, 2016, Pages 18-23, 4(1), 18–23. https://doi.org/10.12691/wjar-4-1-3

Benson. (2001). Microbiological Applications Laboratory Manual in General Microbiology. Laboratory Protocol.

Fitriyani dan Huyyirna (2020). Metode Penyimpanan Bakteri Vibrio Alginolitycus Dan Vibrio Harveyi Dalam Media Tsb (Tryptic Soy Broth) Dan Gliserol. Integrated LabJournal, 91-101.

Ibrahim, W. M., Olama, Z. A., Abou-elela, G. M., Ramadan, H. S., Hegazy, G. E., & El Badan, D. E. S. (2023). Exploring the antimicrobial, antiviral, antioxidant, and antitumor potentials of marine Streptomyces tunisiensis W4MT573222 pigment isolated from Abu-Qir sediments, Egypt. Microbial Cell Factories, 22(1), 1–17. https://doi.org/10.1186/s12934-023-02106-1

Kaharap AD, Mambo C, Nangoy E. 2016. Uji Efek Antibakteri Ekstrak Batang Akar Kuning (Arcangelisia flava Merr.) Terhadap Bakteri Staphylococcus aureus dan Escherichia coli. e-Biomedik (eBm): 4(1).

Kemenkes RI. (2013). Pedoman Umum Penggunaan Antibiotik. Kemenkes Republik Indonesia. Retrieved from http://dx.doi.org/10.1016/j.jpha.2015.11.005

Kemenkes RI. (2021). Pedoman Penggunaan Antibiotik. Pedoman Penggunaan Antibiotik, 1–97.

Muhardianshah, Kushadiwijayanto, A. A., & Nurrahman, Y. A. (2021). Struktur Pola Vegetasi Mangrove di Desa Sungai Kupah Kecamatan Sungai Kakap Kabupaten Kubu Raya Structure Patterns of Mangrove Vegetation di Desa Sungai Kupah Kecamatan Sungai Kakap Kabupaten Kubu Raya, 4(1), 56–63.

Piotrowska, M., Rzeczycka, M., Ostrowski, R., & Popowska, M. (2017). Diversity of antibiotic resistance among bacteria isolated from sediments and water of carp farms located in a Polish nature reserve. Polish Journal of Environmental Studies, 26(1), 239–252. https://doi.org/10.15244/pjoes/64910

Pratiwi, R. H. (2017). Mekanisme Pertahanan Bakteri Patogen Terhadap Antibiotik. Jurnal Pro-Life, 4(3), 418–429.

Richter, L. E., Carlos, A., & Beber, D. M. (2020). Mikrobiologi Hasil Pertanian. (M. E. Kustyawati, Ed.). Pusaka Medika.

Romano, G., Almeida, M., Coelho, A. V., Cutignano, A., Gonçalves, L. G., Hansen, E., Geneviere, A.-M. (2022). Bioactive natural products and biomaterials from marine inver3 tebrates: from basic research to innovative applications. Manuscript submitted for publication. Marine Drugs, 20, 1–45.

Sabido, E. M., Tenebro, C. P., Suarez, A. F. L., Ong, S. D. C., Von Trono, D. J. L., Amago, D. S., Dalisay, D. S. (2020). Marine sediment-derived streptomyces strain produces angucycline antibiotics against multidrug-resistant staphylococcus aureus harboring SCCmec type 1 gene. Journal of Marine Science and Engineering, 8(10), 1–19. https://doi.org/10.3390/JMSE8100734.

Sessitsch AB, Reiter G, Berg. 2004. Endophytic Bacterial Communities of Field-Grown Potato Plants and Their Plant-Growth-Promoting and Antagonistic Abilities. Can J Microbiol. 50(4): 239–249.

Shah, H. N., & Collins, M. D. (1988). Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas. International Journal of Systematic Bacteriology, 38(1), 128–131. https://doi.org/10.1099/00207713-38-1-128

Siregar, A. F., Sabdono, A., & Pringgenies, D. (2012). Potensi Antibakteri Ekstrak Rumput Laut Terhadap Bakteri Penyakit Kulit Pseudomonas aeruginosa , Staphylococcus epidermidis , dan Micrococcus luteus dari Laboratorium Balai Kesehatan Jawa, 1, 152–160.

Sukoco, D., Fikrinda, & Hifnalisa. (2020). Eksplorasi Bakteri Selulolitik pada Ekosistem Mangrove. Jurnal Ilmiah Mahasiswa Pertanian, 5(3), 35–42.

Tenebro, C. P., Trono, D. J. V. L., Vicera, C. V. B., Sabido, E. M., Ysulat, J. A., Macaspac, A. J. M., Dalisay, D. S. (2021). Multiple strain analysis of Streptomyces species from Philippine marine sediments reveals intraspecies heterogeneity in antibiotic activities. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-96886-4

Thirunavukkarasu, R., Subramanian, K., & Balaraman, D. (2014). Screening of marine seaweeds for bioactive compound against fish pathogenic bacteria and active fraction analysed by gas chromatography– mass spectrometry. Journal of Coastal Life Medicine, (May). https://doi.org/10.12980/jclm.2.2014j48

Vining LC, Westlake D. 1984. Chloramphenicol: properties, biosynthesis and fermentation, p 387–409. In Vandamme EJ (ed), Biotechnology of industrial antibiotics. Marcel Dekker, New York, NY

Yadav M, Yadav A, Kumar S, Sharma D, Yadav JP. 2014. Evaluation of in vitro antimicrobial potential of endophytic fungi isolated from Eugenia jambolana Lam. Inter J Pharmacy and Pharmaceutical Sciences. 6:208211.

Zhao, X., Zervas, A., Hendriks, M., Rajkovic, A., van Overbeek, L., Hendriksen, N. B., & Uyttendaele, M. (2022). Identification and characterization of Bacillus thuringiensis and other Bacillus cereus group isolates from spinach by whole genome sequencing. Frontiers in Microbiology, 13(December). https://doi.org/10.3389/fmicb.2022.1030921




DOI: https://doi.org/10.33394/bioscientist.v12i2.12527

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia