Analisis Cluster: Pedagogy Knowledge Guru Menuju Digitalisasi Pendidikan di Era Merdeka Belajar Berdasarkan Daerah Afirmasi

I Gede Ratnaya, Titi Laily Hajiriah, Siti Rabiatul Fajri, Herdiyana Fitriani

Abstract


The competence possessed by teachers is an important factor in achieving learning and education goals in schools. One of the essential competencies in the learning process is pedagogical competence. The Era of Independent Learning marks a paradigm shift in education in Indonesia by utilizing technology to improve the quality of learning. However, challenges arise especially in affirmation areas that have different socio-economic conditions and educational infrastructure. This study aims to determine the ability of teachers' pedagogic competence in facing the digitalization of education in the era of Independent Learning based on affirmation areas. In addition, this study also groups teachers based on their pedagogic abilities towards the digitalization of education in the era of Freedom of Learning using cluster analysis analyzed through SPSS For Windows 23. The research sample consisted of 100 respondents from several affirmation regions in Indonesia, such as Bima, West Lombok, East Lombok, Central Lombok, Maluku, NTT, Papua, and Sumbawa. Additional respondents came from non-affirmative areas as comparators, including Mataram City, Surabaya, Kalimantan, and Magetan East Java. The results of the study show that West Lombok Regency has the highest level of pedagogic competence among affirmation areas with a score of 87.74, while Bima Regency has the lowest score of 75. This average score is still categorized as high because it is above 75. The comparison area shows that Magetan has the highest average score of 100. Cluster analysis showed the formation of two groups, namely cluster 1 consisting of teachers from Magetan, Papua, West Lombok, and NTT, and cluster 2 consisting of teachers from Kalimantan, Bima, Surabaya, Mataram City, Maluku, Sumbawa, and Central Lombok.


Keywords


Pedagogy Knowledge, Digitalization of Education, Freedom of Learning, Affirmation Areas.

Full Text:

Full Paper

References


Ary, M. (2016). Pengklasifikasian Karakteristik Mahasiswa Baru Dalam Memilih Program Studi Menggunakan Analisis Cluster. Jurnal Informatika, 2(1). https://doi.org/10.31311/ji.v2i1.58

Awalluddin, A. S., & Taufik, I. (2017). Analisis Cluster Data Longitudinal pada Pengelompokan Daerah Berdasarkan Indikator IPM di Jawa Barat. Prosiding Seminar Nasional Metode Kuantitatif, 978.

Butar Butar, R. P. (2023). Analisis Hierarchical Dan Non-Hierarchical Clustering Untuk Pengelompokkan Potensi Ekonomi Kelautan Indonesia 2021. Jurnal Sistem Dan Teknologi Informasi (JustIN), 11(3), 543. https://doi.org/10.26418/justin.v11i3.67283

Damayanti, A. R., & Wijayanto, A. W. (2021). Comparison of Hierarchical and Non-Hierarchical Methods in Clustering Cities in Java Island using the Human Development Index Indicators year 2018. EIGEN MATHEMATICS JOURNAL, 8–17. https://doi.org/10.29303/emj.v4i1.89

Dani, A. T. R., Wahyuningsih, S., & Rizki, N. A. (2021). Pengelompokkan Data Runtun Waktu menggunakan Analisis Cluster. EKSPONENSIAL, 11(1).

Dewi, I. N., & Safnowandi, S. (2020). The Combination of Small Group Discussion and ARCS (MODis-ARCS Strategy) to Improve Students’ Verbal Communication Skill and Learning Outcomes. Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram, 8(1), 25-36. https://doi.org/10.33394/j-ps.v8i1.2478

Fajrianti, F., Bustan, M. N., & Tiro, M. A. (2019). Penggunaan Analisis Cluster K-Means dan Analisis Diskriminan Dalam Pengelompokan Desa Miskin di Kabupaten Pangkep. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 1(2). https://doi.org/10.35580/variansiunm9355

Hanada, S., Teti, S., Yanti, P., Statistika, F., Matematika, D., Ilmu, P., Alam, I., & Bandung, I. (2021). Penggunaan analisis cluster dalam pengelompokan kecamatan di Kabupaten Karawang berdasarkan metode kontrasepsi peserta kb aktif. Prosiding Statistika, 7(1).

Hasanah, I. N., & Sofro, A. (2022). ANALISIS CLUSTER BERDASARKAN DAMPAK EKONOMI DI INDONESIA AKIBAT PANDEMI COVID-19. MATHunesa: Jurnal Ilmiah Matematika, 10(2). https://doi.org/10.26740/mathunesa.v10n2.p239-248

Ismail, R., & Imawan, O. R. (2021). MENINGKATKAN PENGUASAAN TPACK GURU DI PAPUA MELALUI PELATIHAN PEMBUATAN VIDEO PEMBELAJARAN PADA MASA PANDEMI COVID-19. 5(1), 277–288.

Karangora, W. D., Niha, S. S., Kaluge, A. H., Talok, D., & Yasinto, Y. (2023). Pengaruh Kompetensi Pedagogik, Kompetensi Sosial, dan Penilaian Kinerja Terhadap Kinerja Guru Smp di Kabupaten Kupang Dengan Etos Kerja Sebagai Variabel Intervening. JIMT: Jurnal Ilmu Manajemen Terapan, 4(3), 426–439. https://creativecommons.org/licenses/by/4.0/

Kaya, F., & Sahin, S. (2017). Comparison of Hierarchical and Non-Hierarchical Clustering Algorithms. Computer Science, 9(1). https://api.semanticscholar.org/CorpusID:212456885

Kemendikbud. (2018). Peningkatan Akses dan Mutu Pendidikan Tingkat Sekolah Dasar di Provinsi Papua dan Papua Barat. In Teknologi Pembuatan Kapal Pinisi Kabupaten Bulukumba (Vol. 7, Issue 1).

Kinanty, K., & Ramadan, Z. H. (2021). Profil Kompetensi Pedagogik Guru Sekolah Dasar. Mimbar Ilmu, 26(3), 425. https://doi.org/10.23887/mi.v26i3.40826

Koesnadi, G. L., Handayani, K. T., Marwanda, N. D., Qomaryah, P. M., Amelia, D., Mardianto, M. F. F., & Ana, E. (2023). Pengelompokkan Provinsi Berdasarkan Prioritas Potensi Sektor Maritim Indikator Blue Economy Menggunakan Analisis Cluster Average Linkage. Jurnal Sains Matematika Dan Statistika, 9(1). https://doi.org/10.24014/jsms.v9i1.20291

Matdoan, M. Y., & Noya Van Delsen, M. S. (2020). STATMAT (Jurnal Statistika dan Matematika PENERAPAN ANALISIS CLUSTER DENGAN METODE HIERARKI UNTUK KLASIFIKASI KABUPATEN/KOTA DI PROVINSI MALUKU BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA. 2(2).

Maulidia, N., & Wulandari, S. P. (2022). Analisis Cluster dan Korespondensi terhadap Indikator Pertumbuhan Penduduk Kota Surabaya Tahun 2020. Jurnal Sains Dan Seni ITS, 11(1). https://doi.org/10.12962/j23373520.v11i1.62843

Musfiani, M. (2019). ANALISIS CLUSTER DENGAN MENGGUNAKAN METODE PARTISI PADA PENGGUNA ALAT KONTRASEPSI DI KALIMANTAN BARAT. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 8(4). https://doi.org/10.26418/bbimst.v8i4.36584

Nafisah, Q., & Chandra, N. E. (2017). Analisis Cluster Average Linkage Berdasarkan Faktor-Faktor Kemiskinan di Provinsi Jawa Timur. Zeta - Math Journal, 3(2). https://doi.org/10.31102/zeta.2017.3.2.31-36

Paramadina, M., Sudarmin, S., & Aidid, M. K. (2019). Perbandingan Analisis Cluster Metode Average Linkage dan Metode Ward (Kasus: IPM Provinsi Sulawesi Selatan). VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 1(2). https://doi.org/10.35580/variansiunm9357

Poerwanto, B., & Fa’rifah, R. Y. (2016). Analisis Cluster K-Means Dalam Pengelompokan Kemampuan Mahasiswa. Indonesian Journal of Fundamental Sciences, 2(2).

Prima, R., Arien, Y., & Sutikno. (2020). Analisis Cluster Virus Corona (COVID-19) di Indonesia pada 2 Maret 2020 – 12 April 2020 dengan Metode K-Means Clustering. In Geoscience (Issue May).

Priyanta, A. (2000). KOMPETENSI PEDAGOGIK GURU KELAS DI SEKOLAH DASAR. Encyclopedia of Volcanoes., 1995, 662.

Rahmawati, R., & Faisal, M. (2019). Analisis Cluster untuk Pengelompokan Desa Berdasarkan Indikator Penyakit Diare. SAINTIFIK, 5(1). https://doi.org/10.31605/saintifik.v5i1.202

Rahmi, N. S. (2021). MAPPING TINGKAT KERAWANAN COVID-19 DAN FAKTOR AKSELERATOR PENYEBARAN VIRUS ANTAR DAERAH DI INDONESIA DENGAN MENGGUNAKAN ANALISIS CLUSTER HIERARKI. Seminar Nasional Official Statistics, 2020(1). https://doi.org/10.34123/semnasoffstat.v2020i1.512

Santosa, R. G., Chrismanto, A. R., & Kurniawan, E. (2020). Analisis Cluster Terhadap Karakteristik Mahasiswa Jalur Prestasi FTI UKDW. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(1). https://doi.org/10.26418/jp.v6i1.37216

Sari, Y. S. (2018). Pengembangan Kompetensi Pedagogik Guru Sd Dalam Pembelajaran Tematik Integratif Kurikulum 2013 Berbasis Budaya Lokal. Ensains Journal, 1(1), 64–71. https://doi.org/10.31848/ensains.v1i1.53

Satya, M. T., & Rahayu, N. K. (2020). Pengklasifikasian Karakteristik Iklan UMKM Menggunakan Analisis Cluster. Jesya (Jurnal Ekonomi & Ekonomi Syariah), 3(2). https://doi.org/10.36778/jesya.v3i2.169

Setiani, Y., & Rahmat, U. (2023). ANALISIS CLUSTER DENGAN METODE AVERAGE LINKAGE PADA PENGELOMPOKAN SMP DI CILANDAK BERDASARKAN STANDAR NASIONAL PENDIDIKAN. MathVision : Jurnal Matematika, 5(1). https://doi.org/10.55719/mv.v5i1.398

Sroyer, A. M., Mandowen, S. A., & Reba, F. (2022). Analisis Cluster Penyakit Malaria Provinsi Papua Menggunakan Metode Single Linkage Dan K-Means. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(3). https://doi.org/10.25077/teknosi.v7i3.2021.147-154

Suhaeni, C., Kurnia, A., & Ristiyanti, R. (2018). Perbandingan Hasil Pengelompokan menggunakan Analisis Cluster Berhirarki, K-Means Cluster, dan Cluster Ensemble (Studi Kasus Data Indikator Pelayanan Kesehatan Ibu Hamil). JURNAL MEDIA INFOTAMA, 14(1). https://doi.org/10.37676/jmi.v14i1.469

Wahyuni, I., & Wulandari, S. P. (2022). Pemetaan Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Kesejahteraan Rakyat Menggunakan Analisis Cluster Hierarki. Jurnal Sains Dan Seni ITS, 11(1). https://doi.org/10.12962/j23373520.v11i1.63092




DOI: https://doi.org/10.33394/bioscientist.v12i1.10750

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
Bioscientist : Jurnal Ilmiah Biologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Editorial Address: Pemuda Street No. 59A, Catur Building Floor I, Mataram City, West Nusa Tenggara Province, Indonesia