The Validity of the Discovery Learning Model to Improve Students' Creative Thinking Skills

This study aims to determine the validity of the product in the form of learning tools based on discovery learning models to improve creative thinking skills of students on momentum and impulse material. The type of research used in this research is R&D (Research and Development) with a 4D model namely define, design, develop and disseminate. The products developed are syllabus, Learning implementation plan, teaching materials, Student worksheet and creative thinking ability test instruments. Validity data was obtained from the results of filling out the validation sheet by six validators, namely three expert validators and three practitioner validators. The validation sheets are filling by Likert scale of 1-4. The percentage of validity results by expert validators has an average value of 84.82% with a fairly valid category. And the results of the validity value by the practitioner validators have an average value of 94.12% with a very valid category. The result of this study indicates that learning devices based on discovery learning models to improve students creative thinking skills are valid for use in learning at school.

Keywords: Learning tools, discovery learning, creative thinking skills

INTRODUCTION

In the world of education, it is very important to ensure that students must have various abilities. 21st century abilities are abilities that are needed by students at this time (Hutagalung, 2019). In the face of the 21st century, of course it must be balanced with the progress of the abilities by students (Aji, 2017). Every school needs to equip students with today’s 21st century abilities namely, critical thinking, creative thinking, problem solving, cooperative and communication. These skills are skills that can be developed from learning situations into daily life (Setiawan et al., 2018). Because new standards are needed so feature students will have the competencies that are needed in the 21st century (Zubaidah, 2016).

One of the 21st century abilities that students must have is the skills to think creatively. Creative thinking skills can make students more active, dare to express opinions, problems and solutions (Aswan, 2016). Creative thinking skills is a type of thinking that leads students into new insights, new approaches, new perspectives and whole new ways to understand things (Eragamreddy, 2013). Based on Torrance indicators the skills to think creatively has several indicators namely, fluency, flexibility, originality and elaboration (Sipayung et al., 2018). If these indicators can be achieved, it means that students have succeeded in applying creative thinking skills (Nurtaela et al., 2019). One of the advantages of having the ability to think creatively is being able to solve a problem in learning activities (Koestiari et al., 2015).

However, the creative thinking skills of students in current learning activities are less prominent, because schools do not facilitate students at this point (Timurun et al., 2017). This statement is in line with the results of observations that have been made by researchers to students of SMAN 1 Gerung. In learning activities, students are seen to be less active in responding to the material that has been taught. The application of learning tools such as student worksheet is also not implemented properly. As is known, student worksheet really helps students to understand the material by conducting experiments. So that activeness of students, which is a determinant of the implementation of learning activities can increase. This is in line with the results of Damanik’s research (2018) in his research, there are some teachers who only make tools for administrative competences and student worksheet is not applied. This resulted in the learning objectives could not be achieved properly. The results of observations also state that students in learning activities only take notes, attention to teacher explanations, summarize material books and work on questions (Butar et al., 2020). Teachers are still the only source of information in learning activities. And these activities are not in accordance with the learning process applied in the 2013 curriculum. That is student centered learning. The ongoing learning stills applies teacher centered learning (Damanik, 2018).

Teacher centered learning is a method of learning lectures, questions and answers, assignments and discussions using the blackboard as the only medium in the learning process, so that the involvement of students in the learning process is less prominent (Simanjuntak et al., 2021). Teacher centered learning has an impact on classroom learning, which causes
students to be less able to use their potential and do not understand the concept of learning well (Ramadhani, 2017). Coupled with the Covid-19 pandemic which has an effect on online learning. Students only understand learning based on their own interpretation (Assuni, 2020). The existence of a concept error is also one of the factors that makes it difficult to improve creative thinking skills. However, this can be changed by changing the learning paradigm from teacher centered to student centered (Verawati et al., 2017). One way is by applying a learning model. Of the learning models that can be used to improve or develop students creative thinking skills in learning is the discovery learning model.

Discovery learning models are teaching methods that can regulate students in order to gain new knowledge that has not been known before, so that knowledge is obtained from their own experience not through the teacher (Suwandari et al., 2019). Students can also find concepts in a more structured and can formulate learning problems in a better way. (Tumurun, 2016). Discovery learning model has six indicators namely, stimulation to stimulate students, identifying problems, collecting data, processing data, verifying data dan making conclusions (In’am & Hajah, 2017). These indicators will help students to improve their creative thinking skills. To support the development of the discovery learning model, a learning device is needed as a medium.

Learning devices are tools that have been prepared by the teacher to support the learning process (Sulam et al., 2017). With the learning tools, teacher can more easily to convey the material. The integration of the implementation learning model is poured in the form of learning tools. With the teachers learning tools, it will be easier to convey learning material (Sahidu, 2019). Based on this description, this researcher aims to develop learning tools that are in accordance with the 2013 curriculum, namely student-centered learning tools. Thus learning device based on a discovery learning model was develop.

METHOD

The type of research that used by researchers in this study is Research and Development. Research and development is research method that used to produce certain products and test the effectiveness of those products (Arifuddin et al., 2021). The development model that used in this study is the 4-D model. The development model consists of four stages namely, define, design, develop and disseminate, which was develop by Thiagarajan. However, in this study only three stages were used, that is until the development stage.

1. **Define stage.** is the first stage of this research, this stage aims to obtain information about the curriculum used, student characteristics, field problems, learning models and concepts in learning. Interview sheets are used in this stage, as a data collection tool.

2. **Design stage.** aims to prepare a prototype that will be used in research. Learning tools that will be developed are syllabus, lesson plan, teaching materials, student worksheet and test instruments.

3. **Develop stage.** aims to produce learning tools. The learning tools that were developed then validated for suggestions and comments by experts validators and practitioner validators. The validation of the learning tools was carried out by 3 expert validators from the Physics Education lecturer at the University of Mataram and 3 practitioner validators who were physics subject teachers at SMAN 1 Gerung and SMAN 2 Gerung. The formula used in calculating the percentage of validation obtained is:

 \[P = \frac{\sum \text{Score obtained}}{N} \times 100\% \]

 Description:

 - \(\sum \text{Score obtained} \) = Score obtained
 - \(N \) = Maximum score
 - \(P \) = Percentage number

 Changing the data from the assessment results from letters to scores with the provisions of using the rating scale in table 1.

 Table 1. Assessment Score Against Answer Choices

<table>
<thead>
<tr>
<th>Statement</th>
<th>SS</th>
<th>S</th>
<th>TS</th>
<th>STS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive statement</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Negative statement</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

 (Source: Hidayat Ariz, 2013)
Validation questionnaire and response using four choices of statements. The percentage data is then converted into the criteria for the validity of the learning device.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Validity Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.1%-100%</td>
<td>Very valid</td>
</tr>
<tr>
<td>70.1%-85%</td>
<td>Quite valid</td>
</tr>
<tr>
<td>50.1%-70%</td>
<td>Not valid</td>
</tr>
<tr>
<td>0%-50%</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

(Source: Akbar, 2013).

RESULTS AND DISCUSSION

The stages of research results in detail.

1. Define stage

At this stage, four activities are carried out, namely (a) The initial analysis was conducted to find out the basic problems that occur in school through observation. Observations were made by interviewing physics teachers at SMAN 1 Gerung. It was obtained information that physics learning that took place in the classroom tented to be less active in responding. The learning provided is still one way or teacher centered. This is in line with the research results by Purohita et al. (2020) where the learning that takes place in the classroom is only teacher centered, not in line with the expectations of the government which expects student centered learning.

The use of student worksheet learning tools is also not applied in learning. (b) Concept analysis is the identification stage of the main concepts. By linking the main concept and other concepts will form a concept maps (c) Task analysis is a collection of information needed to determine the contents of the assignment draft in the lesson plan derived from core competencies and basic competencies (Wiyatmo et al., 2015). The subject that used in this lesson is momentum and impulse material (d) The specification of learning objectives is the formulation of learning objectives based on core competencies and basic competencies about a material concept (Wiyatmo et al., 2015). Indicators become a reference in making learning objectives in this study.

2. Design stage

The purpose of this stage is to prepare a prototype of the learning tools used in the research. The learning tools based on the discovery learning model are composed of syllabus, lesson plans, teaching materials, worksheets and test instruments. Learning tools are then validated by expert validators and practitioners.

3. Develop stage

Validation of learning devices, this validation stage aims to obtain data on the results of the validity of the devices developed by researchers before being tested (Saputro et al., 2015). The validation of learning tools was carried out by three expert validators and three practitioner validators. The expert validator is a lecturer in the Department of Physics Education, FKIP, University of Mataram and the practitioner validator is a physics subject teacher at school. In the validation there are qualitative data and quantitative data. Qualitative data obtained from comments and suggestions given by the validator. While quantitative data is obtained from the results of filling out the validation sheet by the validator. The validation sheet is filled out using a Likert scale. Based on the results of the validation sheet, the data obtained from research on the validity of learning devices from expert validators and practitioner validators with an average value of 89.47% which is in the very valid category.

a. Syllabus validity

The syllabus is a reference for making other learning tools. The average percentage of syllabus validation is 90.8% with a very valid category. However, it still needs some improvements based on the suggestions and comments that have been given. This is in line with the results of the Indiastuti research (2016) where suggestions from the validator will later be used as material in making revisions. Based on the results of the assessment as well as suggestions and comments given by the validator, overall this syllabus is suitable for use in learning at school. because it contains all the components
of the syllabus in accordance with applicable school regulations. Where the components of the syllabus that are made generally contain competency standards, basic competencies, indicators, subject matter, learning activities, assessments, time allocation, and learning resources (Zubaidi, 2015:112). And all these components have been included in the syllabus made by the researcher.

b. Lesson plan validity

The lesson plan is a short-term plan to estimate the things that will be done in learning. The average percentage of lesson plan validation is 90.8% with a very valid category. Based on the results of the assessment of suggestions and comments given, overall lesson plan with the application of the discovery learning learning model is feasible to use in learning in schools. Because it contains all the components of the lesson plan in accordance with applicable government regulations. Where according to article 20 of the government regulation, the lesson plan contains at least the learning objectives, teaching materials, teaching methods, learning resources and assessment of learning outcomes. (Zubaidi, 2015:110). And the lesson plan made by the researcher contains all of these things.

c. Validity of teaching materials

Teaching materials are the main things that need to be conveyed by the teacher and understood by students, so that later students are able to master the learning delivered. The average percentage of teaching material validation is 88.5% with a very valid category. However, in the validation of this teaching materials, some improvements are still needed based on the validators suggestions and comments. Based on the overall assessment and suggestions and comments, this teaching materials is feasible to be applied in learning at school. This is because, learning tools in the form of concept maps and teaching materials contained in teaching materials really help students to understand the subject matter, because presentation in the form of books alone will not be enough for students, so other media are needed, namely teaching materials.

d. Validity of worksheet

Student worksheet are sheets that used as guidelines in learning that contain experiments and questions. Student worksheet make experiments from each material presented in several meetings that refer to indicators of creative thinking skills. The average percentage of validation for student worksheet is 88.05% with a very valid category. Based on the assessment of suggestions and comments, this student worksheet is feasible to be applied in learning in schools. This is also because the LKPD made by researchers has included components of creative thinking skills in the questions made. Another thing is because the student worksheet that is made contains interesting pictures/illustrations and brings up experimental/experimental activities that can support the performance of students to improve creative thinking skills.

e. The validity of the creative thinking ability test instrument

The test instrument is one part of the learning device that is used as a measure of the achievement of learning competencies. The instrument test prepared by the researcher was intended to measure the creative thinking skills of students at school. The average percentage validation of the creative thinking skills test instrument is 89.2% with a very valid category. Overall, the test instrument learning device to improve students creative thinking skills is feasible to be applied in learning at school. This is because the test instrument made contains components of creative thinking abilities. So that the expected learning objectives can be realized properly.

The following are the results of the analysis of the validity of learning tools from expert validators and practitioner validators.

<table>
<thead>
<tr>
<th>No</th>
<th>Learning Tools</th>
<th>Scoring scores by expert validators</th>
<th>Total</th>
<th>Percentage</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V.1</td>
<td>V.2</td>
<td>V.3</td>
<td>V.4</td>
</tr>
<tr>
<td>1</td>
<td>Syllabus</td>
<td>87.5</td>
<td>80</td>
<td>90</td>
<td>92.5</td>
</tr>
<tr>
<td>2</td>
<td>Lesson plan</td>
<td>85</td>
<td>80</td>
<td>92.5</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>Student worksheet</td>
<td>90.6</td>
<td>78.1</td>
<td>87.5</td>
<td>78.1</td>
</tr>
<tr>
<td>4</td>
<td>Teaching materials</td>
<td>84.3</td>
<td>78.1</td>
<td>87.5</td>
<td>90.6</td>
</tr>
</tbody>
</table>
The results of the percentage of validity obtained from the expert validators are in the quite valid category with an average value of 84.82%. As for the practitioner validator, the average percentage value is 94.12% and is in the very valid category. In general, for research from expert validators and practitioner validators, the learning tools developed are assessed in a very valid category from the syllabus to the creative thinking skills test instrument. Thus, the learning tools used in the research are considered adequate. This is supported by the research results of Purohita et al. (2020) where researchers found that the use of discovery learning-based learning tools was able to improve students’ creative thinking skills.

Calculation of validity data from expert validators and practitioner validators can be seen in the following table.

<table>
<thead>
<tr>
<th>No</th>
<th>Learning tools</th>
<th>Scoring scores by expert validators</th>
<th>Total</th>
<th>Percentage</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V.1</td>
<td>V.2</td>
<td>V.3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Syllabus</td>
<td>87.5</td>
<td>80</td>
<td>90</td>
<td>257.5%</td>
</tr>
<tr>
<td>2</td>
<td>Lesson plan</td>
<td>85</td>
<td>80</td>
<td>92.5</td>
<td>257.5%</td>
</tr>
<tr>
<td>3</td>
<td>Student worksheet</td>
<td>90.6</td>
<td>78.1</td>
<td>87.5</td>
<td>256.2%</td>
</tr>
<tr>
<td>4</td>
<td>Teaching materials</td>
<td>84.3</td>
<td>78.1</td>
<td>87.5</td>
<td>249.9%</td>
</tr>
<tr>
<td>5</td>
<td>Test instrument</td>
<td>89.2</td>
<td>78.5</td>
<td>83.9</td>
<td>251.5%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.82%</td>
</tr>
</tbody>
</table>

Qualitative data obtained from the validation sheet in the form of suggestions and comments from expert validators and practitioner validators. These suggestions and comments are used by researchers as a reference in improving learning devices. However, if the learning device made is in the invalid category, it can be revised first. So that the learning tools are categorized as valid and can be used in learning at school. The following are suggestions and comments provided by expert validators and practitioner validators.

<table>
<thead>
<tr>
<th>No</th>
<th>Learning tools</th>
<th>Suggestions and Comments</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Syllabus</td>
<td>Validator abhi</td>
<td></td>
</tr>
</tbody>
</table>
In the syllabus, it is necessary to add time to test students' creative thinking skills in the form of daily tests.

In learning activities, it is more clear about the activities of students and teachers.

The assessment is broken down between knowledge, skills and attitudes.

Adding time to test students' creative thinking skills during daily tests.

Adding student learning activities to the syllabus.

Detailing/adding assessment of knowledge, skills and attitudes.

Lesson plan

Validator ahli

In the validation rubric, there needs to be a statement of the relevance of the learning process to improve students' creative thinking skills.

On the validation sheet, it is necessary to have a TPACK learning process.

Initial activities should be varied and there are alternative teacher choices.

Validator praktsi

- Adding a description of creative thinking skills on the lesson plan validation sheet.

- Adjusting the TPACK learning process on lesson plan validation.

- Adding alternative perception options for teachers.

Student worksheet

Validator ahli

The validation sheet does not only talk about technique or completeness but contains the content or contents of the student worksheet to support improving creative thinking skills.

Validator praktsi

Activities in student worksheet are adjusted to the learning objectives in the lesson plan.

The activities steps are explained in the sentence structure.

The result recording table is made clearer.

Validator ahli

- Adding a description of creative thinking skills on the student worksheet validation sheet.

- Adjusting student worksheet activities with the objectives of the lesson plan.

- Clarifying sentence structure in student worksheet.

- Make the table of recording results clearer.

Teaching materials

Validator ahli

Adjust the validation statement with the material or teaching materials, namely momentum and impulse, so that it is more specific and not general.

Validator praktsi

- Clarify the validation statement by adding momentum and impulse descriptions to the appropriate criteria.

Test instrument

Validator ahli

The statement on the validation sheet must contain elements that support creative thinking skills.

The concepts of momentum and impulse are written down.

Validator ahli

- Add a description of the ability to think creatively on the appropriate criteria.

- Adding momentum and impulse description to the appropriate criteria.

Suggestions and comments given by expert validators and practitioner validators indicate improvements that must be made by researchers in the learning tools developed. Improvements made by researchers have been listed in the repair column above. Thus, the learning tools developed as a whole in the study are feasible or valid to be used in the learning process in schools. This is based on the results of the percentage value of validity and the improvement of suggestions and comments given by expert validators and practitioner validators.

Learning tools based on the discovery learning model is one way that can be used to implement the 2013 curriculum comprehensively. Discovery learning based learning activities can make students understand the material with the ability of the relevance of the information they have (Roza et al., 2018). This is in
In accordance with research (Arifani, 2016) which states that the discovery learning model is the most effective learning model in learning in the form of a team or independently. The learning tools developed are expected to change the learning paradigm from what was originally teacher centered to become student centered and the approach that was originally more textual turned into contextual. This is supported by the results of research by Damanik et al., (2018) which says that the discovery learning model is considered capable of changing teacher centered learning into student centered learning.

CONCLUSION

Based on the results of research and discussions, it can be concluded that the product development of discovery learning model devices to improve students creative thinking skills on momentum and impulse material in valid for use in learning at school.

RECOMMENDATION

Based on research results, there are research recommendations for the development of devices based on the discovery learning model as follows.

a. Limited time in learning due to the covid-19 pandemic.

b. The problem of creative thinking skills made only consists of one question for one indicator.

c. The covid-19 pandemic has made interactions between researches and students rare outside of class hours.

d. For researchers who will conduct research on the development of similar devices to pay attention to each part and element in the learning device.

REFERENCES

The Validity of the Discovery Learning Model to Improve Students Creative Thinking Skills

<table>
<thead>
<tr>
<th>PRIMARY SOURCES</th>
<th>PRIMARY SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. jppipa.unram.ac.id</td>
<td>3% Internet Source</td>
</tr>
<tr>
<td>2. e-journal.undikma.ac.id</td>
<td>3% Internet Source</td>
</tr>
<tr>
<td>3. basic.ub.ac.id</td>
<td>1% Internet Source</td>
</tr>
<tr>
<td>5. ejournal.undiksha.ac.id</td>
<td>1% Internet Source</td>
</tr>
<tr>
<td>6. journal.uin-alauddin.ac.id</td>
<td>1% Internet Source</td>
</tr>
</tbody>
</table>
| 7. W Sumarni, S Sudarmin, S Kadarwati. "Creative skill improvement of the teacher candidates in designing learning programs | 1% }
through a project-based blended learning", Journal of Physics: Conference Series, 2021

www.deboni.he.com.br

Submitted to Universitas Pendidikan Indonesia

fkip.ummetro.ac.id
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
<th>Internet Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Nanik Wijayati, Woro Sumarni, Sri Supanti</td>
<td>"Improving Student Creative Thinking Skills Through Project Based Learning", KnE Social Sciences, 2019</td>
<td>e-journal.hamzanwadi.ac.id</td>
<td><1 %</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>pdfcoffee.com</td>
<td><1 %</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>www.ijstr.org</td>
<td><1 %</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>ppjp.ulm.ac.id</td>
<td><1 %</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>www.iiste.org</td>
<td><1 %</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>archives.palarch.nl</td>
<td><1 %</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>Publication</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Linda Tri Antika, Atikutul Mukarromah. "Being a scientist during covid-19 pandemic: does guided inquiry affect students’ creative thinking skills?", JPBIJO (Jurnal Pendidikan Biologi), 2021</td>
<td>Publication</td>
<td>Internet Source</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Submitted to UIN Sunan Gunung DJati Bandung</td>
<td>Student Paper</td>
<td>Internet Source</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>ejournal.umm.ac.id</td>
<td>Internet Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>files.eric.ed.gov</td>
<td>Internet Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>scholarcommons.usf.edu</td>
<td>Internet Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>text-id.123dok.com</td>
<td>Internet Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Authors</td>
<td>Title</td>
<td>Publication</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>S Adhiriyanthi, H Solihin, M Arifin</td>
<td>"Improving students’ creative thinking skills through guided inquiry practicums learning with STEM approach", Journal of Physics: Conference Series, 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>etd.uum.edu.my</td>
<td>Internet Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>journal.uad.ac.id</td>
<td>Internet Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>H Rezeki, J Rokhmat, Gunawan, M Makhrus, Wahyudi</td>
<td>"Implementation of causalitic-learning devices to improve creative thinking ability and problem-solving of students in"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S Hendri, A K Kenedi, Y Anita, M Habibi, A U Akmal. "Validation of discovery learning-based to increase the ability of elementary students problem solving skills", Journal of Physics: Conference Series, 2019

Chandra Kirana, Ety Tejo Dwi Cahyowati. "An implementation of open-ended approach with TPS (Think Pair Share) to improve creative
thinking skills for student of class VII-B of SMP Negeri 9 Malang", AIP Publishing, 2020

Dian Fitria Tanjung, Edi Syahputra, Irvan Irvan. "Problem Based Learning, Discovery Learning, and Open Ended Models: An experiment On Mathematical Problem Solving Ability", JTAM | Jurnal Teori dan Aplikasi Matematika, 2020